<> (-- ?x) () -- ( little endian binary integers ) -- ( constants ) <> zero ((0 nil)) <> one ((1 nil)) <> two ((0 (1 nil))) <> three ((1 (1 nil))) <> ten ((0 (1 (0 (1 nil))))) -- ( decimal digit to binary ) <> (binary 0) ((0 nil)) <> (binary 1) ((1 nil)) <> (binary 2) ((0 (1 nil))) <> (binary 3) ((1 (1 nil))) <> (binary 4) ((0 (0 (1 nil)))) <> (binary 5) ((1 (0 (1 nil)))) <> (binary 6) ((0 (1 (1 nil)))) <> (binary 7) ((1 (1 (1 nil)))) <> (binary 8) ((0 (0 (0 (1 nil))))) <> (binary 9) ((1 (0 (0 (1 nil))))) -- ( binary to decimal digit ) <> (decimal (0 nil)) (0) <> (decimal (1 nil)) (1) <> (decimal (0 (1 nil))) (2) <> (decimal (1 (1 nil))) (3) <> (decimal (0 (0 (1 nil)))) (4) <> (decimal (1 (0 (1 nil)))) (5) <> (decimal (0 (1 (1 nil)))) (6) <> (decimal (1 (1 (1 nil)))) (7) <> (decimal (0 (0 (0 (1 nil))))) (8) <> (decimal (1 (0 (0 (1 nil))))) (9) -- create nil-terminated list <> (nilify (?h)) ((?h nil)) <> (nilify (?h ?t)) ((?h nilify ?t)) -- reverse nil-terminated list <> (reverse ?x) (reverse' nil ?x) <> (reverse' ?a nil) (?a) <> (reverse' ?a (?h ?t)) (reverse' (?h ?a) ?t) -- ( normalize, remove trailing zeros ) -- ( currently zero is (0 nil) though arguably it could be nil ) -- ( that change would require auditing our rules ) <> (normalize (?h ?t)) ((?h normalize' nil ?t)) <> (normalize' ?s nil) (nil) <> (normalize' ?s (0 ?t)) (normalize' (0 ?s) ?t) <> (normalize' nil (1 ?t)) ((1 normalize' nil ?t)) <> (normalize' (0 ?s) (1 ?t)) ((0 normalize' ?s (1 ?t))) -- ( to integer ) <> ((int ?*)) ((sum f (one) g reverse nilify (?*))) <> (g nil) (nil) <> (g (?h ?t)) ((binary ?h g ?t)) <> (f (?u) nil) (nil) <> (f (?u) (?h ?t)) (((mul ?h ?u) f ((mul ?u ten)) ?t)) -- ( to string: TODO, need division for this one ) -- ( comparison operartions ) <> ((cmp ?x ?y)) ((cmpc #eq ?x ?y)) <> ((cmpc ?e nil nil)) (?e) <> ((cmpc ?e (1 ?x) nil)) (#gt) <> ((cmpc ?e (0 ?x) nil)) ((cmpc ?e ?x nil)) <> ((cmpc ?e nil (1 ?y))) (#lt) <> ((cmpc ?e nil (0 ?y))) ((cmpc ?e nil ?y)) <> ((cmpc ?e (0 ?x) (0 ?y))) ((cmpc ?e ?x ?y)) <> ((cmpc ?e (1 ?x) (0 ?y))) ((cmpc #gt ?x ?y)) <> ((cmpc ?e (0 ?x) (1 ?y))) ((cmpc #lt ?x ?y)) <> ((cmpc ?e (1 ?x) (1 ?y))) ((cmpc ?e ?x ?y)) -- ( addition ) <> ((add ?x ?y)) (addc 0 ?x ?y) <> (addc 0 nil nil) (nil) <> (addc 1 nil nil) ((1 nil)) <> (addc ?c ?x nil) (addc ?c ?x (0 nil)) <> (addc ?c nil ?y) (addc ?c (0 nil) ?y) <> (addc 0 (0 ?x) (0 ?y)) ((0 addc 0 ?x ?y)) <> (addc 0 (0 ?x) (1 ?y)) ((1 addc 0 ?x ?y)) <> (addc 0 (1 ?x) (0 ?y)) ((1 addc 0 ?x ?y)) <> (addc 0 (1 ?x) (1 ?y)) ((0 addc 1 ?x ?y)) <> (addc 1 (0 ?x) (0 ?y)) ((1 addc 0 ?x ?y)) <> (addc 1 (0 ?x) (1 ?y)) ((0 addc 1 ?x ?y)) <> (addc 1 (1 ?x) (0 ?y)) ((0 addc 1 ?x ?y)) <> (addc 1 (1 ?x) (1 ?y)) ((1 addc 1 ?x ?y)) -- ( summation ) <> ((sum nil)) ((0 nil)) <> ((sum (?a nil))) (?a) <> ((sum (?a (?b ?c)))) ((sum ((add ?a ?b) ?c))) -- ( multiplication ) <> ((mul ?x ?y)) (mulc nil ?x ?y) <> (mulc ?t nil ?y) ((sum ?t)) <> (mulc ?t (0 ?x) ?y) (mulc ?t ?x (0 ?y)) <> (mulc ?t (1 ?x) ?y) (mulc (?y ?t) ?x (0 ?y)) -- ( subtraction ) <> ((sub ?x ?y)) (normalize subc 0 ?x ?y) <> (subc 0 nil nil) (nil) <> (subc 1 nil nil) (#err) <> (subc 0 ?x nil) (?x) <> (subc 1 ?x nil) (subc 1 ?x (0 nil)) <> (subc ?c nil ?y) (subc ?c (0 nil) ?y) <> (subc 0 (0 ?x) (0 ?y)) ((0 subc 0 ?x ?y)) <> (subc 0 (0 ?x) (1 ?y)) ((1 subc 1 ?x ?y)) <> (subc 0 (1 ?x) (0 ?y)) ((1 subc 0 ?x ?y)) <> (subc 0 (1 ?x) (1 ?y)) ((0 subc 0 ?x ?y)) <> (subc 1 (0 ?x) (0 ?y)) ((1 subc 1 ?x ?y)) <> (subc 1 (0 ?x) (1 ?y)) ((0 subc 1 ?x ?y)) <> (subc 1 (1 ?x) (0 ?y)) ((0 subc 0 ?x ?y)) <> (subc 1 (1 ?x) (1 ?y)) ((1 subc 1 ?x ?y)) -- ( dec ) <> (dec (0 nil)) (#err) <> (dec ?x) (normalize dec' ?x) <> (dec' (0 ?t)) ((1 dec' ?t)) <> (dec' (1 ?t)) ((0 ?t)) -- ( inc ) <> ((inc nil)) ((1 nil)) <> ((inc (0 ?t))) ((1 ?t)) <> ((inc (1 ?t))) ((0 (inc ?t))) -- ( left shift; lshift x b means x< ((lshift ?x (0 nil))) (?x) <> ((lshift ?x (1 nil))) ((0 ?x)) <> ((lshift ?x (?h (?a ?b)))) ((lshift (0 ?x) dec (?h (?a ?b)))) -- ( divmod, i.e. quotient and remainder ) <> ((divmod ?x ?y)) ((divmod1 ?x ?y (cmp ?x ?y))) <> ((divmod1 ?x ?y #lt)) (zero) <> ((divmod1 ?x ?y #eq)) (one) <> ((divmod1 ?x ?y #gt)) ((divmod2 ?x ?y zero (0 ?y))) <> ((divmod2 ?x ?y ?s ?m)) ((divmod3 ?x ?y ?s ?m (cmp ?x ?m))) <> ((divmod3 ?x ?y ?s ?m #lt)) ((divmod4 ?x ?y ?s zero)) <> ((divmod3 ?x ?y ?s ?m #eq)) ((divmod4 ?x ?y (inc ?s) zero)) <> ((divmod3 ?x ?y ?s ?m #gt)) ((divmod2 ?x ?y (inc ?s) (0 ?m))) <> ((divmod4 ?x ?y (0 nil) ?d)) (((add ?d one) (sub ?x ?y))) <> ((divmod4 ?x ?y ?s ?d)) ((divmod5 (sub ?x (lshift ?y ?s)) ?y dec ?s (add ?d (lshift one ?s)))) <> ((divmod5 (0 nil) ?y ?s ?d)) ((?d (0 nil))) <> ((divmod5 ?x ?y ?s ?d)) ((divmod6 ?x ?y ?s ?d (cmp ?x (lshift ?y ?s)))) <> ((divmod6 ?x ?y (0 nil) ?d #lt)) ((?d ?x)) <> ((divmod6 ?x ?y ?s ?d #lt)) ((divmod5 ?x ?y dec ?s ?d)) <> ((divmod6 ?x ?y ?s ?d #eq)) ((divmod4 ?x ?y ?s ?d)) <> ((divmod6 ?x ?y ?s ?d #gt)) ((divmod4 ?x ?y ?s ?d)) -- ( floor divison ) <> ((div ?x ?y)) ((div' (divmod ?x ?y))) <> ((div' (?q ?r))) (?q) -- ( remainder ) <> ((mod ?x ?y)) ((mod' (divmod ?x ?y))) <> ((mod' (?q ?r))) (?r) (mod (int 64) (int 13))