<> (-- ?x) () -- ( little endian binary integers ) -- ( constants ) <> zero ((0 ())) <> one ((1 ())) <> ten ((0 (1 (0 (1 ()))))) -- ( decimal digit to binary ) <> (binary 0) ((0 ())) <> (binary 1) ((1 ())) <> (binary 2) ((0 (1 ()))) <> (binary 3) ((1 (1 ()))) <> (binary 4) ((0 (0 (1 ())))) <> (binary 5) ((1 (0 (1 ())))) <> (binary 6) ((0 (1 (1 ())))) <> (binary 7) ((1 (1 (1 ())))) <> (binary 8) ((0 (0 (0 (1 ()))))) <> (binary 9) ((1 (0 (0 (1 ()))))) -- ( binary to decimal digit ) <> ((decimal (0 ()))) (0) <> ((decimal (1 ()))) (1) <> ((decimal (0 (1 ())))) (2) <> ((decimal (1 (1 ())))) (3) <> ((decimal (0 (0 (1 ()))))) (4) <> ((decimal (1 (0 (1 ()))))) (5) <> ((decimal (0 (1 (1 ()))))) (6) <> ((decimal (1 (1 (1 ()))))) (7) <> ((decimal (0 (0 (0 (1 ())))))) (8) <> ((decimal (1 (0 (0 (1 ())))))) (9) -- reverse ()-terminated list <> (reverse ?x) (reverse' () ?x) <> (reverse' ?a ()) (?a) <> (reverse' ?a (?h ?t)) (reverse' (?h ?a) ?t) -- ( normalize, remove trailing zeros ) -- ( currently zero is (0 ()) though arguably it could be () ) -- ( that change would require auditing our rules ) <> (normalize (?h ?t)) ((?h normalize' () ?t)) <> (normalize' ?s ()) (()) <> (normalize' ?s (0 ?t)) (normalize' (0 ?s) ?t) <> (normalize' () (1 ?t)) ((1 normalize' () ?t)) <> (normalize' (0 ?s) (1 ?t)) ((0 normalize' ?s (1 ?t))) -- ( to integer ) <> ((int ?*)) ((sum f (one) g reverse (?*))) <> (g ()) (()) <> (g (?h ?t)) ((binary ?h g ?t)) <> (f (?u) ()) (()) <> (f (?u) (?h ?t)) (((mul ?h ?u) f ((mul ?u ten)) ?t)) -- ( to binary str ) <> ((bstr ?x)) (emit force (0 (b ?x))) -- ( to string: TODO, need division for this one ) <> ((str ?x)) ((str1 ?x ())) <> ((str1 (0 ()) ?a)) (emit force ?a) <> ((str1 (?h ?t) ?a)) ((str2 (divmod (?h ?t) ten) ?a)) <> ((str2 (?q ?r) ?a)) ((str1 ?q ((decimal ?r) ?a))) -- ( force a list to evaluate to digits/letters ) <> ((?h force/r ?t)) (force/r (?h ?t)) <> (force ()) (force/r ()) <> (force (0 ?t)) ((0 force ?t)) <> (force (1 ?t)) ((1 force ?t)) <> (force (2 ?t)) ((2 force ?t)) <> (force (3 ?t)) ((3 force ?t)) <> (force (4 ?t)) ((4 force ?t)) <> (force (5 ?t)) ((5 force ?t)) <> (force (6 ?t)) ((6 force ?t)) <> (force (7 ?t)) ((7 force ?t)) <> (force (8 ?t)) ((8 force ?t)) <> (force (9 ?t)) ((9 force ?t)) <> (force (a ?t)) ((a force ?t)) <> (force (b ?t)) ((b force ?t)) <> (force (c ?t)) ((c force ?t)) <> (force (d ?t)) ((d force ?t)) <> (force (e ?t)) ((e force ?t)) <> (force (f ?t)) ((f force ?t)) <> (force (x ?t)) ((x force ?t)) -- ( emit ) <> (emit force/r ?*) (?*) -- ( comparison operartions ) <> ((cmp ?x ?y)) ((cmpc #eq ?x ?y)) <> ((cmpc ?e () ())) (?e) <> ((cmpc ?e (1 ?x) ())) (#gt) <> ((cmpc ?e (0 ?x) ())) ((cmpc ?e ?x ())) <> ((cmpc ?e () (1 ?y))) (#lt) <> ((cmpc ?e () (0 ?y))) ((cmpc ?e () ?y)) <> ((cmpc ?e (0 ?x) (0 ?y))) ((cmpc ?e ?x ?y)) <> ((cmpc ?e (1 ?x) (0 ?y))) ((cmpc #gt ?x ?y)) <> ((cmpc ?e (0 ?x) (1 ?y))) ((cmpc #lt ?x ?y)) <> ((cmpc ?e (1 ?x) (1 ?y))) ((cmpc ?e ?x ?y)) -- ( addition ) <> ((add ?x ?y)) (addc 0 ?x ?y) <> (addc 0 () ()) (()) <> (addc 1 () ()) ((1 ())) <> (addc ?c ?x ()) (addc ?c ?x (0 ())) <> (addc ?c () ?y) (addc ?c (0 ()) ?y) <> (addc 0 (0 ?x) (0 ?y)) ((0 addc 0 ?x ?y)) <> (addc 0 (0 ?x) (1 ?y)) ((1 addc 0 ?x ?y)) <> (addc 0 (1 ?x) (0 ?y)) ((1 addc 0 ?x ?y)) <> (addc 0 (1 ?x) (1 ?y)) ((0 addc 1 ?x ?y)) <> (addc 1 (0 ?x) (0 ?y)) ((1 addc 0 ?x ?y)) <> (addc 1 (0 ?x) (1 ?y)) ((0 addc 1 ?x ?y)) <> (addc 1 (1 ?x) (0 ?y)) ((0 addc 1 ?x ?y)) <> (addc 1 (1 ?x) (1 ?y)) ((1 addc 1 ?x ?y)) -- ( summation ) <> ((sum ())) ((0 ())) <> ((sum (?a ()))) (?a) <> ((sum (?a (?b ?c)))) ((sum ((add ?a ?b) ?c))) -- ( multiplication ) <> ((mul ?x ?y)) (mulc () ?x ?y) <> (mulc ?t () ?y) ((sum ?t)) <> (mulc ?t (0 ?x) ?y) (mulc ?t ?x (0 ?y)) <> (mulc ?t (1 ?x) ?y) (mulc (?y ?t) ?x (0 ?y)) -- ( subtraction ) <> ((sub ?x ?y)) (normalize subc 0 ?x ?y) <> (subc 0 () ()) (()) <> (subc 1 () ()) (#err) <> (subc 0 ?x ()) (?x) <> (subc 1 ?x ()) (subc 1 ?x (0 ())) <> (subc ?c () ?y) (subc ?c (0 ()) ?y) <> (subc 0 (0 ?x) (0 ?y)) ((0 subc 0 ?x ?y)) <> (subc 0 (0 ?x) (1 ?y)) ((1 subc 1 ?x ?y)) <> (subc 0 (1 ?x) (0 ?y)) ((1 subc 0 ?x ?y)) <> (subc 0 (1 ?x) (1 ?y)) ((0 subc 0 ?x ?y)) <> (subc 1 (0 ?x) (0 ?y)) ((1 subc 1 ?x ?y)) <> (subc 1 (0 ?x) (1 ?y)) ((0 subc 1 ?x ?y)) <> (subc 1 (1 ?x) (0 ?y)) ((0 subc 0 ?x ?y)) <> (subc 1 (1 ?x) (1 ?y)) ((1 subc 1 ?x ?y)) <> (dec (0 ())) (#err) <> (dec (1 ())) ((0 ())) <> (dec (1 ?t)) ((0 ?t)) <> (dec (0 ?t)) (dec' (0 ?t)) <> (dec' (1 ())) (()) <> (dec' (1 ?t)) ((0 ?t)) <> (dec' (0 ?t)) ((1 dec' ?t)) -- ( inc ) <> ((inc ())) ((1 ())) <> ((inc (0 ?t))) ((1 ?t)) <> ((inc (1 ?t))) ((0 (inc ?t))) -- ( left shift; lshift x b means x< ((lshift ?x (0 ()))) (?x) <> ((lshift ?x (1 ()))) ((0 ?x)) <> ((lshift ?x (0 (?a ?b)))) ((lshift (0 ?x) dec (0 (?a ?b)))) <> ((lshift ?x (1 (?a ?b)))) ((lshift (0 ?x) (0 (?a ?b)))) <> ((rshift1 (?a ()))) ((0 ())) <> ((rshift1 (?a (?b ?c)))) ((?b ?c)) -- ( divmod, i.e. quotient and remainder ) -- ( x is the dividend, or what's left of it ) -- ( y is the divisor ) -- ( s is the number of bits to shift, so far ) -- ( o is the next valuet o add to the quotient ) -- ( m is the next multiple of y to work with ) -- ( d is the quotient, so far ) <> ((divmod ?x ?y)) ((divmod1 ?x ?y (cmp ?x ?y))) <> ((divmod1 ?x ?y #lt)) ((zero ?x)) <> ((divmod1 ?x ?y #eq)) ((one zero)) <> ((divmod1 ?x ?y #gt)) ((divmod2 ?x ?y zero ?y)) <> ((divmod2 ?x ?y ?s ?m)) ((divmod3 ?x ?y ?s ?m (cmp ?x (0 ?m)))) <> ((divmod3 ?x ?y ?s ?m #gt)) ((divmod2 ?x ?y (inc ?s) (0 ?m))) <> ((divmod3 ?x ?y ?s ?m #eq)) ((divmod4 ?x ?y (inc ?s) (0 ?m) zero)) <> ((divmod3 ?x ?y ?s ?m #lt)) ((divmod4 ?x ?y ?s ?m zero)) <> ((divmod4 ?x ?y (0 ()) ?m ?d)) (((add ?d one) (sub ?x ?y))) <> ((divmod4 ?x ?y ?s ?m ?d)) ((divmod5 (sub ?x ?m) ?y dec ?s (rshift1 ?m) (add ?d (lshift one ?s)))) <> ((divmod5 (0 ()) ?y ?s ?m ?d)) ((?d (0 ()))) <> ((divmod5 ?x ?y ?s ?m ?d)) ((divmod6 ?x ?y ?s ?m ?d (cmp ?x ?m))) <> ((divmod6 ?x ?y (0 ()) ?m ?d #lt)) ((?d ?x)) <> ((divmod6 ?x ?y ?s ?m ?d #lt)) ((divmod5 ?x ?y dec ?s (rshift1 ?m) ?d)) <> ((divmod6 ?x ?y ?s ?m ?d #eq)) ((divmod4 ?x ?y ?s ?m ?d)) <> ((divmod6 ?x ?y ?s ?m ?d #gt)) ((divmod4 ?x ?y ?s ?m ?d)) -- ( floor divison ) <> ((div ?x ?y)) ((div' (divmod ?x ?y))) <> ((div' (?q ?r))) (?q) -- ( remainder ) <> ((mod ?x ?y)) ((mod' (divmod ?x ?y))) <> ((mod' (?q ?r))) (?r) -- (bstr (mul (int 2399) (int 3499))) (str (int 1234567890))