<> (-- ?x) () -- ( little endian binary integers ) -- ( constants ) <> zero ((0 ())) <> one ((1 ())) <> ten ((0 (1 (0 (1 ()))))) -- ( decimal digit to binary ) <> ((binary 0)) ((0 ())) <> ((binary 1)) ((1 ())) <> ((binary 2)) ((0 (1 ()))) <> ((binary 3)) ((1 (1 ()))) <> ((binary 4)) ((0 (0 (1 ())))) <> ((binary 5)) ((1 (0 (1 ())))) <> ((binary 6)) ((0 (1 (1 ())))) <> ((binary 7)) ((1 (1 (1 ())))) <> ((binary 8)) ((0 (0 (0 (1 ()))))) <> ((binary 9)) ((1 (0 (0 (1 ()))))) -- ( binary to decimal digit ) <> ((decimal ())) (0) <> ((decimal (0 ()))) (0) <> ((decimal (1 ()))) (1) <> ((decimal (0 (1 ())))) (2) <> ((decimal (1 (1 ())))) (3) <> ((decimal (0 (0 (1 ()))))) (4) <> ((decimal (1 (0 (1 ()))))) (5) <> ((decimal (0 (1 (1 ()))))) (6) <> ((decimal (1 (1 (1 ()))))) (7) <> ((decimal (0 (0 (0 (1 ())))))) (8) <> ((decimal (1 (0 (0 (1 ())))))) (9) -- reverse ()-terminated list <> (reverse ?x) (reverse1 () ?x) <> (reverse1 ?a ()) (?a) <> (reverse1 ?a (?h ?t)) (reverse1 (?h ?a) ?t) -- ( to integer ) <> ((int ?*)) ((sum f (one) g reverse (?*))) <> (g ()) (()) <> (g (?h ?t)) (((binary ?h) g ?t)) <> (f (?u) ()) (()) <> (f (?u) (?h ?t)) (((mul ?h ?u) f ((mul ?u ten)) ?t)) -- ( to binary str ) -- ( <> ((bstr ?x)) (emit force (0 (b ?x))) ) -- ( <> ((bstr ?x)) ((bstr1 () ?x)) ) <> ((bstr ?x)) ((bstr1 force ?x ())) <> ((bstr1 force/r () ?a)) (emit force/r (0 (b ?a))) <> ((bstr1 force/r (?h ?t) ?a)) ((bstr1 force/r ?t (?h ?a))) -- ( to string: TODO, need division for this one ) <> ((str ?x)) ((str1 ?x ())) <> ((str1 (0 ()) ?a)) (emit force ?a) <> ((str1 (?h ?t) ?a)) ((str2 (divmod (?h ?t) ten) ?a)) <> ((str2 (?q ?r) ?a)) ((str1 ?q ((decimal ?r) ?a))) -- ( force a list to evaluate to digits/letters ) <> ((?h force/r ?t)) (force/r (?h ?t)) <> (force ()) (force/r ()) <> (force (0 ?t)) ((0 force ?t)) <> (force (1 ?t)) ((1 force ?t)) <> (force (2 ?t)) ((2 force ?t)) <> (force (3 ?t)) ((3 force ?t)) <> (force (4 ?t)) ((4 force ?t)) <> (force (5 ?t)) ((5 force ?t)) <> (force (6 ?t)) ((6 force ?t)) <> (force (7 ?t)) ((7 force ?t)) <> (force (8 ?t)) ((8 force ?t)) <> (force (9 ?t)) ((9 force ?t)) <> (force (a ?t)) ((a force ?t)) <> (force (b ?t)) ((b force ?t)) <> (force (c ?t)) ((c force ?t)) <> (force (d ?t)) ((d force ?t)) <> (force (e ?t)) ((e force ?t)) <> (force (f ?t)) ((f force ?t)) <> (force (x ?t)) ((x force ?t)) -- ( emit ) <> (emit force/r ?*) (?*) -- ( comparison operartions ) <> ((cmp ?x ?y)) ((cmpc #eq ?x ?y)) <> ((cmpc ?e () ())) (?e) <> ((cmpc ?e (1 ?x) ())) (#gt) <> ((cmpc ?e (0 ?x) ())) ((cmpc ?e ?x ())) <> ((cmpc ?e () (1 ?y))) (#lt) <> ((cmpc ?e () (0 ?y))) ((cmpc ?e () ?y)) <> ((cmpc ?e (0 ?x) (0 ?y))) ((cmpc ?e ?x ?y)) <> ((cmpc ?e (1 ?x) (0 ?y))) ((cmpc #gt ?x ?y)) <> ((cmpc ?e (0 ?x) (1 ?y))) ((cmpc #lt ?x ?y)) <> ((cmpc ?e (1 ?x) (1 ?y))) ((cmpc ?e ?x ?y)) -- ( addition ) <> ((add ?x ?y)) ((addc 0 ?x ?y)) <> ((addc 0 () ())) (()) <> ((addc 1 () ())) ((1 ())) -- ( <> ((addc ?c ?x ())) ((addc ?c ?x (0 ()))) ) -- ( <> ((addc ?c () ?y)) ((addc ?c (0 ()) ?y)) ) <> ((addc 0 ?x ())) (?x) <> ((addc 0 () ?y)) (?y) <> ((addc 1 ?x ())) ((addc 1 ?x (0 ()))) <> ((addc 1 () ?y)) ((addc 1 (0 ()) ?y)) <> ((addc 0 (0 ?x) (0 ?y))) ((0 (addc 0 ?x ?y))) <> ((addc 0 (0 ?x) (1 ?y))) ((1 (addc 0 ?x ?y))) <> ((addc 0 (1 ?x) (0 ?y))) ((1 (addc 0 ?x ?y))) <> ((addc 0 (1 ?x) (1 ?y))) ((0 (addc 1 ?x ?y))) <> ((addc 1 (0 ?x) (0 ?y))) ((1 (addc 0 ?x ?y))) <> ((addc 1 (0 ?x) (1 ?y))) ((0 (addc 1 ?x ?y))) <> ((addc 1 (1 ?x) (0 ?y))) ((0 (addc 1 ?x ?y))) <> ((addc 1 (1 ?x) (1 ?y))) ((1 (addc 1 ?x ?y))) -- ( summation ) <> ((sum ())) ((0 ())) <> ((sum (?a ()))) (?a) <> ((sum (?a (?b ?c)))) ((sum ((add ?a ?b) ?c))) -- ( multiplication ) <> ((mul ?x ?y)) ((mulc () ?x ?y)) <> ((mulc ?t () ?y)) ((sum ?t)) <> ((mulc ?t (0 ?x) ?y)) ((mulc ?t ?x (0 ?y))) <> ((mulc ?t (1 ?x) ?y)) ((mulc (?y ?t) ?x (0 ?y))) -- ( subtraction ) <> ((sub ?x ?y)) (sub1 0 ?x ?y ()) <> (sub1 0 () () ?s) (()) <> (sub1 1 () () ?s) (#err) <> (sub1 ?c ?x () ?s) (sub1 ?c ?x (0 ()) ?s) <> (sub1 ?c () ?y ?s) (sub1 ?c (0 ()) ?y ?s) <> (sub1 0 (0 ?x) (0 ?y) ?s) (sub1 0 ?x ?y (0 ?s)) <> (sub1 0 (0 ?x) (1 ?y) ?s) (sub2 1 ?x ?y ?s) <> (sub1 0 (1 ?x) (0 ?y) ?s) (sub2 0 ?x ?y ?s) <> (sub1 0 (1 ?x) (1 ?y) ?s) (sub1 0 ?x ?y (0 ?s)) <> (sub1 1 (0 ?x) (0 ?y) ?s) (sub2 1 ?x ?y ?s) <> (sub1 1 (0 ?x) (1 ?y) ?s) (sub1 1 ?x ?y (0 ?s)) <> (sub1 1 (1 ?x) (0 ?y) ?s) (sub1 0 ?x ?y (0 ?s)) <> (sub1 1 (1 ?x) (1 ?y) ?s) (sub2 1 ?x ?y ?s) <> (sub2 ?c ?x ?y ()) ((1 sub1 ?c ?x ?y ())) <> (sub2 ?c ?x ?y (?h ?t)) ((0 sub2 ?c ?x ?y ?t)) <> (dec (0 ())) (#err) <> (dec (1 ())) ((0 ())) <> (dec (1 ?t)) ((0 ?t)) <> (dec (0 ?t)) (dec1 (0 ?t)) <> (dec1 (1 ())) (()) <> (dec1 (1 ?t)) ((0 ?t)) <> (dec1 (0 ?t)) ((1 dec1 ?t)) -- ( inc ) <> ((inc ())) ((1 ())) <> ((inc (0 ?t))) ((1 ?t)) <> ((inc (1 ?t))) ((0 (inc ?t))) -- ( left shift; lshift x b means x< ((lshift ?x (0 ()))) (?x) <> ((lshift ?x (1 ()))) ((0 ?x)) <> ((lshift ?x (0 (?a ?b)))) ((lshift (0 ?x) dec (0 (?a ?b)))) <> ((lshift ?x (1 (?a ?b)))) ((lshift (0 ?x) (0 (?a ?b)))) <> ((rshift1 (?a ()))) ((0 ())) <> ((rshift1 (?a (?b ?c)))) ((?b ?c)) -- ( divmod, i.e. quotient and remainder ) -- ( x is the dividend, or what's left of it ) -- ( y is the divisor ) -- ( s is the number of bits to shift, so far ) -- ( o is the next valuet o add to the quotient ) -- ( m is the next multiple of y to work with ) -- ( d is the quotient, so far ) <> ((divmod ?x ?y)) ((divmod1 ?x ?y (cmp ?x ?y))) <> ((divmod1 ?x ?y #lt)) ((zero ?x)) <> ((divmod1 ?x ?y #eq)) ((one zero)) <> ((divmod1 ?x ?y #gt)) ((divmod2 ?x ?y zero ?y)) <> ((divmod2 ?x ?y ?s ?m)) ((divmod3 ?x ?y ?s ?m (cmp ?x (0 ?m)))) <> ((divmod3 ?x ?y ?s ?m #gt)) ((divmod2 ?x ?y (inc ?s) (0 ?m))) <> ((divmod3 ?x ?y ?s ?m #eq)) ((divmod4 ?x ?y (inc ?s) (0 ?m) zero)) <> ((divmod3 ?x ?y ?s ?m #lt)) ((divmod4 ?x ?y ?s ?m zero)) <> ((divmod4 ?x ?y (0 ()) ?m ?d)) (((add ?d one) (sub ?x ?y))) <> ((divmod4 ?x ?y ?s ?m ?d)) ((divmod5 (sub ?x ?m) ?y dec ?s (rshift1 ?m) (add ?d (lshift one ?s)))) <> ((divmod5 (0 ()) ?y ?s ?m ?d)) ((?d (0 ()))) <> ((divmod5 ?x ?y ?s ?m ?d)) ((divmod6 ?x ?y ?s ?m ?d (cmp ?x ?m))) <> ((divmod6 ?x ?y (0 ()) ?m ?d #lt)) ((?d ?x)) <> ((divmod6 ?x ?y ?s ?m ?d #lt)) ((divmod5 ?x ?y dec ?s (rshift1 ?m) ?d)) <> ((divmod6 ?x ?y ?s ?m ?d #eq)) ((divmod4 ?x ?y ?s ?m ?d)) <> ((divmod6 ?x ?y ?s ?m ?d #gt)) ((divmod4 ?x ?y ?s ?m ?d)) -- ( floor divison ) <> ((div ?x ?y)) ((div1 (divmod ?x ?y))) <> ((div1 (?q ?r))) (?q) -- ( remainder ) <> ((mod ?x ?y)) ((mod1 (divmod ?x ?y))) <> ((mod1 (?q ?r))) (?r) -- ( expontentiation ) <> ((pow ?x ())) ((1 ())) <> ((pow ?x (0 ()))) ((1 ())) <> ((pow ?x (1 ()))) (?x) <> ((pow ?x (0 ?k))) ((pow (mul ?x ?x) ?k)) <> ((pow ?x (1 ?k))) ((mul ?x (pow (mul ?x ?x) ?k))) -- ( greatest common denominator ) <> ((gcd ?a ?b)) ((gcd1 ?a ?b (cmp ?b (0 ())))) <> ((gcd1 ?a ?b #eq)) (?a) <> ((gcd1 ?a ?b #gt)) ((gcd ?b (mod ?a ?b))) <> ((gcd1 ?a ?b #lt)) ((gcd ?b (mod ?a ?b))) -- ( least common multiple ) <> ((lcm ?a ?b)) ((mul ?a (div ?b (gcd ?a ?b)))) (str (lcm (int 1000) (int 777)))