( fix16.tal ) ( ) ( use a signed 16-bit short as a fixed point number. ) ( ) ( numbers are interpreted as fractions with an implicit ) ( 256 denominator. the upper byte is signed and ) ( represents the "whole" part of the number, and the ) ( lower byte is unsigned and represents the ) ( "fractional" part of the number. ) ( ) ( 16-bit fixed point can represent fractional values ) ( in the range -128 <= x < 128. the smallest fraction it ) ( can represent is 1/256, which is about 0.004. ) ( ) ( SHORT FRACTION DECIMAL ) ( #0000 0/256 0.000 ) ( #0001 1/256 0.004 ) ( #0002 2/256 0.008 ) ( #0040 64/256 0.250 ) ( #0080 128/256 0.500 ) ( #0100 256/256 1.000 ) ( #0700 1792/256 7.000 ) ( #7f00 32512/256 127.000 ) ( #7fff 32767/256 127.996 ) ( #8000 -32768/256 -128.000 ) ( #8001 -32767/256 -127.996 ) ( #8100 -32767/256 -127.000 ) ( #ff00 -256/256 -1.000 ) ( #ffff -1/256 -0.004 ) ( ) ( many 8.8 operations are equivalent to uin16: ) ( * addition/subtraction ) ( * division ) ( or signed int16: ) ( * comparisons/equality ) ( ) ( but due to 16-bit truncation multiplication differs... ) ( ) ( x*y = x0*y0 + x0*y1/256 + x1*y0/256 + x1*y1/65536 ) ( ) ( since we only have 16-bits: ) ( 1. we need to drop the 8 high bits from x0*y0 ) ( 2. we need to drop the 8 low bits from x1*y1 ) ( 3. we need to use all the bits from x0*y1 and x1*y0 ) ( ) ( that said, if either x or y is whole (i.e. ends in 00) ) ( then we can just shift that argument right by 8 and use ) ( MUL2. ) |1000 ( useful constants ) ( ) ( to generate your own: ) ( 1. take true value, e.g. 3.14159... ) ( 2. multiply by 256 ) ( 3. round to nearest whole number ) ( 4. emit hex output ) ( ) ( in python: hex(round(x * 256)) ) %x16-zero { #0000 } ( 0.0 ) %x16-one { #0100 } ( 1.0 ) %x16-two { #0200 } ( 2.0 ) %x16-ten { #0a00 } ( 10.0 ) %x16-hundred { #6400 } ( 100.0 ) %x16-minus-one { #7f00 } ( -1.0 ) %x16-minus-two { #7e00 } ( -2.0 ) %x16-pi/2 { #0192 } ( 1.57079... ) %x16-pi { #0324 } ( 3.14159... ) %x16-pi*2 { #0648 } ( 6.28318... ) %x16-e { #02b8 } ( 2.71828... ) %x16-phi { #019e } ( 1.61803... ) %x16-sqrt-2 { #016a } ( 1.41421... ) %x16-sqrt-3 { #01bb } ( 1.73205... ) %x16-epsilon { #0001 } ( 0.00390625 ) %x16-minimum { #8000 } ( -128.0 ) %x16-maximum { #7fff } ( 127.99609375 ) ( useful macros ) %x16-is-non-neg { x16-minimum LTH2 } %x16-is-neg { x16-maximum GTH2 } ( comparison between x and y. ) ( - ff: x < y ) ( - 00: x = y ) ( - 01: x > y ) @x16-cmp ( x* y* -> c^ ) STH2k x16-is-neg ,&yn JMP x16-is-non-neg ,&ypxp ( y>=0 ) POP2 POP2r #ff JMP2r ( x<0 y>=0 ) &ypxp ;x16-ucmp JMP2 ( x>=0 y>=0 ) &yn x16-is-neg ,&ynxn ( y<0 ) POP2 POP2r #01 JMP2r ( x>=0 y<0 ) &ynxn SWP2 ;x16-ucmp JMP2 ( x<0 y<0 ) ( unsigned comparison between x and y. ) ( - ff: x < y ) ( - 00: x = y ) ( - 01: x > y ) @x16-ucmp ( x* y* -> c^ ) LTH2k ,< JCN GTH2 JMP2r < POP2 POP2 #ff JMP2r @x16-eq ( x* y* -> x=y ) EQU2 JMP2r @x16-ne ( x* y* -> x!=0 ) NEQ2 JMP2r @x16-lt ( x* y* -> x x x x bool^ ) NIP #00 EQU JMP2r @x16-add ( x* y* -> x+y* ) ADD2 JMP2r @x16-sub ( x* y* -> x-y* ) SUB2 JMP2r @x16-negate ( x* -> -x* ) #0000 SWP2 SUB2 JMP2r @x16-mul ( x* y* -> xy* ) DUP #00 EQU ,&rhs-whole JCN SWP2 DUP #00 EQU ,&rhs-whole JCN ,&y3 STR ,&y1 STR ,&x3 STR ,&x1 STR LIT2 &x2 00 &x3 00 LIT2 &y2 00 &y3 00 MUL2 #08 SFT2 LIT2 &x0 00 &x1 00 ,&y2 LDR2 MUL2 ADD2 ,&x2 LDR2 LIT2 &y0 00 &y1 00 MUL2 ADD2 ,&x0 LDR2 ,&x0 LDR2 MUL2 #80 SFT2 ADD2 JMP2r &rhs-whole #08 SFT2 MUL2 JMP2r @x16-div ( x* y* -> x/y* ) SWP2 DUP2 x16-is-non-neg ,&non-negative ( y x ) ;x16-negate JSR2 SWP2 DIV2 ;x16-negate JMP2 &non-negative SWP2 DIV2 JMP2r @x16-mod ( x* y* -> x%y* ) ;x16-div JSR2 ;x16-mul JSR2 SUB2 JMP2r @x16-mod-div ( x* y* -> x%y* x/y* ) ;x16-div JSR2 STH2k ;x16-mul JSR2 SUB2 STH2r JMP2r @x16-div-mod ( x* y* -> x/y* x%y* ) ;x16-mod-div JSR2 SWP2 JMP2r