( math32.tal ) ( ) ( This library supports arithmetic on 32-bit unsigned integers, ) ( also known as long values. ) ( ) ( 32-bit long values are represented by two 16-bit short values: ) ( ) ( decimal hexadecimal uxn literals ) ( 0 0x00000000 #0000 #0000 ) ( 1 0x00000001 #0000 #0001 ) ( 4660 0x00001234 #0000 #1234 ) ( 65535 0x0000ffff #0000 #ffff ) ( 65536 0x00010000 #0001 #0000 ) ( 16777215 0x00ffffff #00ff #ffff ) ( 4294967295 0xffffffff #ffff #ffff ) ( ) ( The most significant 16-bit, the "high bits", are stored first. ) ( We document long values as x** -- equivalent to xhi* xlo*. ) ( ) ( Operations supported: ) ( ) ( NAME STACK EFFECT DEFINITION ) ( add32 x** y** -> z** x + y ) ( sub32 x** y** -> z** x - y ) ( mul16 x* y* -> z** x * y ) ( mul32 x** y** -> z** x * y ) ( div32 x** y** -> q** x / y ) ( mod32 x** y** -> r** x % y ) ( divmod32 x** y** -> q** r** x / y, x % y ) ( gcd32 x** y** -> z** gcd[x, y] ) ( negate32 x** -> z** -x ) ( lshift32 x** n^ -> z** x< z** x>>n ) ( and32 x** y** -> z** x & y ) ( or32 x** y** -> z** x | y ) ( xor32 x** y** -> z** x ^ y ) ( complement32 x** -> z** ~x ) ( eq32 x** y** -> bool^ x == y ) ( ne32 x** y** -> bool^ x != y ) ( is-zero32 x** -> bool^ x == 0 ) ( non-zero32 x** -> bool^ x != 0 ) ( lt32 x** y** -> bool^ x < y ) ( gt32 x** y** -> bool^ x > y ) ( lteq32 x** y** -> bool^ x <= y ) ( gteq32 x** y** -> bool^ x >= y ) ( bitcount8 x^ -> bool^ floor[log2[x]]+1 ) ( bitcount16 x* -> bool^ floor[log2[x]]+1 ) ( bitcount32 x** -> bool^ floor[log2[x]]+1 ) ( ) ( bitcount: number of bits needed to represent the number. ) ( this is equivalent to floor[log2[x]] + 1 ) @bitcount8 ( x^ -> n^ ) LITr 00 &loop DUP ?{ POP STHr JMP2r } #01 SFT INCr !&loop @bitcount16 ( x* -> n^ ) LITr 00 &loop ORAk ?{ POP2 STHr JMP2r } #01 SFT2 INCr !&loop @bitcount32 ( x** -> n^ ) SWP2 bitcount16 DUP ?{ POP !bitcount16 } #10 NIP2 ADD JMP2r ( -- equality ) ( x == y ) @eq32 ( xhi* xlo* yhi* ylo* -> bool^ ) ROT2 EQU2 STH EQU2 STHr AND JMP2r ( x != y ) @ne32 ( xhi* xlo* yhi* ylo* -> bool^ ) ROT2 NEQ2 STH NEQ2 STHr ORA JMP2r ( x == 0 ) @is-zero32 ( x** -> bool^ ) ORA2 #0000 EQU2 JMP2r ( x != 0 ) @non-zero32 ( x** -> bool^ ) ORA2 ORA JMP2r ( -- comparisons ) ( x < y ) @lt32 ( x** y** -> bool^ ) ROT2 SWP2 LTH2 ?{ LTH2 JMP2r } GTH2 #00 EQU JMP2r ( x <= y ) @lteq32 ( x** y** -> bool^ ) ROT2 SWP2 GTH2 ?{ GTH2 #00 EQU JMP2r } LTH2 JMP2r ( x > y ) @gt32 ( x** y** -> bool^ ) ROT2 SWP2 GTH2 ?{ GTH2 JMP2r } LTH2 #00 EQU JMP2r ( x > y ) @gteq32 ( x** y** -> bool^ ) ROT2 SWP2 LTH2 ?{ LTH2 #00 EQU JMP2r } GTH2 JMP2r ( -- bitwise operations ) ( x & y ) @and32 ( xhi* xlo* yhi* ylo* -> xhi&yhi* xlo&ylo* ) ROT2 AND2 STH2 AND2 STH2r JMP2r ( x | y ) @or32 ( xhi* xlo* yhi* ylo* -> xhi|yhi* xlo|ylo* ) ROT2 ORA2 STH2 ORA2 STH2r JMP2r ( x ^ y ) @xor32 ( xhi* xlo* yhi* ylo* -> xhi^yhi* xlo^ylo* ) ROT2 EOR2 STH2 EOR2 STH2r JMP2r ( ~x ) @complement32 ( x** -> ~xhi* ~xlo* ) SWP2 #ffff EOR2 SWP2 #ffff EOR2 JMP2r ( -- bit-shifting ) ( x >> n ) @rshift32 ( x** n^ -> x>>n ) DUP #08 LTH ?shift32-0 ( x n ) DUP #10 LTH ?rshift32-1 ( x n ) DUP #18 LTH ?rshift32-2 ( x n ) !rshift32-3 ( x n ) ( shift by 0-7 bits; used by both lshift and rshift ) @shift32-0 ( x** n^ -> x>>n ) STH DUP2 STHkr SFT2 ,&z2 STR2 POP DUP2 STHkr SFT2 ,&z2 LDR ORA ,&z2 STR ,&z1 STR POP STHr SFT2 ,&z1 LDR ORA ,&z1 STR LIT [ &z1 $1 ] LIT2 [ &z2 $2 ] JMP2r ( shift right by 8-15 bits ) @rshift32-1 ( x** n^ -> x>>n ) #08 SUB STH ( stash [n>>8] ) POP DUP2 STHkr SFT2 ,&z2 STR2 POP STHr SFT2 ,&z2 LDR ORA ,&z2 STR #00 SWP LIT2 [ &z2 $2 ] JMP2r ( shift right by 16-23 bits ) @rshift32-2 ( x** n^ -> x>>n ) #10 SUB STH ( stash [n>>16] ) POP2 STHr SFT2 #0000 SWP2 JMP2r ( shift right by 16-23 bits ) @rshift32-3 ( x** n^ -> x>>n ) #18 SUB STH ( stash [n>>24] ) POP2 POP STH SWPr SFTr #00 #0000 STHr JMP2r ( x << n ) @lshift32 ( x** n^ -> x< x< x< x< x< zhi* zlo* ) ROT2 STH2k ADD2 STH2k ROT2 ROT2 GTH2r #00 STHr ADD2 ADD2 SWP2 JMP2r ( -x ) @negate32 ( x** -> -x** ) complement32 INC2 ORAk ?{ SWP2 INC2 SWP2 } JMP2r ( x - y ) @sub32 ( x** y** -> z** ) ROT2 STH2k SWP2 SUB2 STH2k ROT2 ROT2 LTH2r #00 STHr ADD2 SUB2 SWP2 JMP2r ( 16-bit multiplication ) @mul16 ( x* y* -> z** ) ,&y1 STR ,&y0 STR ( save ylo, yhi ) ,&x1 STR ,&x0 STR ( save xlo, xhi ) #0000 ,&z1 STR ,&w0 STR ( reset z1 and w0 ) ( x1 * y1 => z1z2 ) LIT2 00 [ &x1 $1 ] LIT2 00 [ &y1 $1 ] MUL2 ,&z3 STR ,&z2 STR ( x0 * y1 => z0z1 ) #00 ,&x0 LDR #00 ,&y1 LDR MUL2 ,&z1 LDR2 ADD2 ,&z1 STR2 ( x1 * y0 => w1w2 ) #00 ,&x1 LDR #00 ,&y0 LDR MUL2 ,&w2 STR ,&w1 STR ( x0 * y0 => w0w1 ) LIT2 00 [ &x0 $1 ] LIT2 00 [ &y0 $1 ] MUL2 ,&w0 LDR2 ADD2 ,&w0 STR2 ( add z and a<<8 ) #00 LIT2 [ &z1 $1 &z2 $1 ] LIT [ &z3 $1 ] LIT2 [ &w0 $1 &w1 $1 ] LIT [ &w2 $1 ] #00 !add32 ( x * y ) @mul32 ( x** y** -> z** ) ROT2k ( x0* x1* y0* y1* y0* y1* x1* ) mul16 ,&z1 STR2 ,&z0 STR2 POP2 ( x0* x1* y0* y1* ; sum = [x1*y1] ) STH2 ROT2 STH2 ( x1* y0* [y1* x0*] ) MUL2r MUL2 STH2r ADD2 ( x1*y0+y1*x0* ) ( [x0*y0]<<32 will completely overflow ) LIT2 [ &z0 $2 ] ADD2 ( sum += [x0*y1+x1*y0]<<16 ) LIT2 [ &z1 $2 ] JMP2r ( x / y ) @div32 ( x** y** -> q** ) z_divmod32 ;z_divmod32/quo0 LDA2 ;z_divmod32/quo1 LDA2 JMP2r ( x % y ) @mod32 ( x** y** -> r** ) z_divmod32 ;z_divmod32/rem0 LDA2 ;z_divmod32/rem1 LDA2 JMP2r ( x / y, x % y ) @divmod32 ( x** y** -> q** r** ) z_divmod32 ;z_divmod32/quo0 LDA2 ;z_divmod32/quo1 LDA2 ;z_divmod32/rem0 LDA2 ;z_divmod32/rem1 LDA2 JMP2r ( private: calculate and store x / y and x % y ) @z_divmod32 ( x** y** -> ) ( ; store y and x for repeated use ) #0000 DUP2 ,&quo0 STR2 ,&quo1 STR2 ( x** y** ; quo<-0 ) STH2k ,&div1 STR2 STH2k ,&div0 STR2 ( x** [ylo* yhi*] ; div<-y ) OVR2 OVR2 ,&rem1 STR2 ,&rem0 STR2 ( x** [ylo* yhi*] ; rem<-x ) OVR2 OVR2 STH2r STH2r ( x** x** y** ) OVR2 OVR2 STH2 STH2 ( x** x** y** [ylo* yhi*] ) gteq32 ?{ POP2 POP2 POP2r POP2r JMP2r } ( x** [ylo* yhi*] ; return if x < y ) ( ; bitcount[x] - bitcount[y] determines largest multiple of y to try ) bitcount32 STH2r STH2r bitcount32 SUB ( shift=rbits-dits^ ) #00 DUP2 ( shift^ 0^ shift^ 0^ ) #0000 INC2k ROT2 POP ( shift^ 0^ 0* 1* shift^ ) lshift32 ,&cur1 STR2 ,&cur0 STR2 ( shift^ 0^ ; cur<-1<= cur [current divisor], we can subtract it and add to quotient ) ( ; otherwise, skip that iteration and reduce cur. ) LIT2 [ &rem0 $2 ] LIT2 [ &rem1 $2 ] ,&div0 LDR2 ,&div1 LDR2 lt32 ?{ ( ; since rem >= div, we have found a multiple of y that divides x ) ,&rem0 LDR2 ,&rem1 LDR2 ( rem** ) LIT2 [ &div0 $2 ] LIT2 [ &div1 $2 ] ( rem** div** ) sub32 ,&rem1 STR2 ,&rem0 STR2 ( ; rem<-rem-div** ) LIT2 [ &quo0 $2 ] LIT2 [ &quo1 $2 ] ( quo** ) LIT2 [ &cur0 $2 ] LIT2 [ &cur1 $2 ] ( quo** cur** ) add32 ,&quo1 STR2 ,&quo0 STR2 ( ; quo<-quo+cur** ) } ,&div0 LDR2 ,&div1 LDR2 #01 rshift32 ( div>>1** ) ,&div1 STR2 ,&div0 STR2 ( ; div<-div>>1 ) ,&cur0 LDR2 ,&cur1 LDR2 #01 rshift32 ( cur>>1** ) OVR2 OVR2 ,&cur1 STR2 ,&cur0 STR2 ( cur>>1** ; cur<-cur>>1 ) non-zero32 ?&loop JMP2r ( ; loop if cur>0, else we're done ) ( greatest common divisor - euclidean algorithm ) @gcd32 ( x** y** -> z** ) &loop OVR2 OVR2 is-zero32 ?{ ( x** y** ) OVR2 OVR2 STH2 STH2 ( x** y** [y**] ) mod32 ( r=x%y** [y**] ) STH2r ROT2 ROT2 ( yhi* rhi* rlo* [ylo*] ) STH2r ROT2 ROT2 !&loop ( y** r** ) } POP2 POP2 JMP2r ( z** )