( math32.tal ) ( ) ( This library supports arithmetic on 32-bit unsigned integers. ) ( 32-bit integers are represented by two 16-bit integers ) ( x** means xhi* xlo* ) %DEBUG { #ff #0e DEO } %RTN { JMP2r } %TOR { ROT ROT } ( a b c -> c a b ) %TOR2 { ROT2 ROT2 } %COMPLEMENT32 { SWP2 #ffff EOR2 SWP2 #ffff EOR2 } ) ( bitcount: number of bits needed to represent number ) ( equivalent to floor[log2[x]] + 1 ) @bitcount8 ( x^ -> n^ ) #00 SWP ( n x ) &loop DUP #00 EQU ( n x x=0 ) ,&done JCN ( n x ) #01 SFT ( n x>>1 ) SWP INC SWP ( n+1 x>>1 ) ,&loop JMP &done POP ( n ) RTN @bitcount16 ( x* -> n^ ) SWP ( xlo xhi ) ;bitcount8 JSR2 ( xlo nhi ) DUP #00 NEQ ( xlo nhi nhi!=0 ) ,&hi-set JCN ( xlo nhi ) SWP ;bitcount8 JSR2 ADD ( nhi+nlo ) RTN &hi-set SWP POP #08 ADD ( nhi+8 ) RTN @bitcount32 ( x** -> n^ ) SWP2 ( xlo* xhi* ) ;bitcount16 JSR2 ( xlo* nhi ) DUP #00 NEQ ( xlo* nhi nhi!=0 ) ,&hi-set JCN ( xlo* nhi ) TOR ;bitcount16 JSR2 ADD RTN ( nhi+nlo ) &hi-set TOR POP2 #10 ADD ( nhi+16 ) RTN ( equality ) @eq32 ( xhi* xlo* yhi* ylo* -> bool^ ) ROT2 EQU2 #00 TOR2 EQU2 SWP POP AND RTN @is-zero32 ( x** -> bool^ ) ORA2 #0000 EQU2 RTN @ne32 ( xhi* xlo* yhi* ylo* -> bool^ ) ROT2 NEQ2 #00 TOR2 NEQ2 SWP POP ORA RTN @non-zero32 ( x** -> bool^ ) ORA2 #0000 NEQ2 RTN ( comparisons ) ( x < y ) @lt32 ( x** y** -> bool^ ) ROT2 SWP2 ( xhi yhi xlo ylo ) LTH2 ,<-lo JCN ( xhi yhi ) LTH2 RTN <-lo GTH2 #00 EQU RTN ( x <= y ) @lteq32 ( x** y** -> bool^ ) ROT2 SWP2 ( xhi yhi xlo ylo ) GTH2 ,>-lo JCN ( xhi yhi ) GTH2 #00 EQU RTN >-lo LTH2 RTN ( x > y ) @gt32 ( x** y** -> bool^ ) ROT2 SWP2 ( xhi yhi xlo ylo ) GTH2 ,>-lo JCN ( xhi yhi ) GTH2 RTN >-lo LTH2 #00 EQU RTN ( x > y ) @gteq32 ( x** y** -> bool^ ) ROT2 SWP2 ( xhi yhi xlo ylo ) LTH2 ,<-lo JCN ( xhi yhi ) LTH2 #00 EQU RTN <-lo GTH2 RTN ( bitwise operations ) @and32 ( xhi* xlo* yhi* ylo* -> xhi|yhi* xlo|ylo* ) ROT2 AND2 TOR2 AND2 SWP2 RTN @or32 ( xhi* xlo* yhi* ylo* -> xhi|yhi* xlo|ylo* ) ROT2 ORA2 TOR2 ORA2 SWP2 RTN @xor32 ( xhi* xlo* yhi* ylo* -> xhi|yhi* xlo|ylo* ) ROT2 EOR2 TOR2 EOR2 SWP2 RTN @complement32 ( x** -> ~x** ) COMPLEMENT32 RTN ( temporary registers ) ( used by most operations, except mul32 and div32 ) @sh [ &r $1 &x0 $1 &x1 $1 &x2 $1 &x3 $1 &y0 $1 &y1 $1 &y2 $1 &y3 $1 &z0 $1 &z1 $1 &z2 $1 &z3 $1 &a0 $1 &a1 $1 &a2 $2 ] ( bit shifting ) ( shift right, i.e. >> ) @right-shift ( x** n^ -> x< x< x< r ) POP ;sh/r LDA SFT ;sh/z3 STA ( write z3 ) #00 ;sh/r LDA SFT2 ;sh/z2 LDA2 ORA2 ;sh/z2 STA2 ( write z2,z3 ) #00 ;sh/r LDA SFT2 ;sh/z1 LDA2 ORA2 ;sh/z1 STA2 ( write z1,z2 ) #00 ;sh/z1 LDA ;sh/z2 LDA2 RTN ( shift right by 16-23 bits ) @right-shift2 ( x** n^ -> x< r ) POP2 ;sh/r LDA SFT ;sh/z3 STA ( write z3 ) #00 ;sh/r LDA SFT2 ;sh/z2 LDA2 ORA2 ;sh/z2 STA2 ( write z2,z3 ) #0000 ;sh/z2 LDA2 RTN ( shift right by 16-23 bits ) @right-shift3 ( x** n^ -> x< r ) POP2 POP #00 SWP #0000 SWP2 ( 00 00 00 x0 ) ;sh/r LDA SFT RTN ( shift left, i.e. << ) @left-shift ( x** n^ -> x< x< r ) SWP SWP2 SWP ( x3 x2 x1 x0 ) ;sh/r LDA SFT ;sh/z0 STA ( x3 x2 x1 ) #00 SWP ;sh/r LDA SFT2 ( x3 x2 00x1< x< r ) SWP SWP2 SWP POP ( x3 x2 x1 ) ;sh/r LDA SFT ;sh/z0 STA ( x3 x2 ) #00 SWP ;sh/r LDA SFT2 ( x3 00x2< x< r ) SWP2 POP2 SWP ( x3 x2 ) ;sh/r LDA SFT ;sh/z0 STA ( x3 ) #00 SWP ;sh/r LDA SFT2 ( x3< x< zhi* zlo* ) ;sh/y2 STA2 ;sh/y0 STA2 ( save ylo, yhi ) ;sh/x2 STA2 ;sh/x0 STA2 ( save xlo, xhi ) #0000 #0000 ;sh/z0 STA2 ;sh/z2 STA2 ( reset zhi, zlo ) ( x3 + y3 => z2z3 ) #00 ;sh/x3 LDA #00 ;sh/y3 LDA ADD2 ;sh/z2 STA2 ( x2 + y2 + z2 => z1z2 ) #00 ;sh/x2 LDA ;sh/z1 LDA2 ADD2 ;sh/z1 STA2 #00 ;sh/y2 LDA ;sh/z1 LDA2 ADD2 ;sh/z1 STA2 ( x1 + y1 + z1 => z0z1 ) #00 ;sh/x1 LDA ;sh/z0 LDA2 ADD2 ;sh/z0 STA2 #00 ;sh/y1 LDA ;sh/z0 LDA2 ADD2 ;sh/z0 STA2 ( x0 + y0 + z0 => z0 ) ;sh/x0 LDA ;sh/z0 LDA ADD ;sh/z0 STA ;sh/y0 LDA ;sh/z0 LDA ADD ;sh/z0 STA ( load zhi,zlo ) ;sh/z0 LDA2 ;sh/z2 LDA2 RTN ( negation, i.e. unary - ) @negate32 ( x** -> -x** ) COMPLEMENT32 INC2 ( ~xhi -xlo ) DUP2 #0000 NEQ2 ( ~xhi -xlo non-zero? ) ,&done JCN ( xlo non-zero => don't inc hi ) SWP2 INC2 SWP2 ( -xhi -xlo ) &done RTN ( subtraction, i.e. binary - ) @sub32 ( x** y** -> z** ) ;negate32 JSR2 ;add32 JSR2 RTN ( 16-bit multiplication ) @mul16 ( x* y* -> z** ) ;sh/y1 STA ;sh/y0 STA ( save ylo, yhi ) ;sh/x1 STA ;sh/x0 STA ( save xlo, xhi ) #0000 #00 ;sh/z1 STA2 ;sh/z3 STA ( reset z1,z2,z3 ) #0000 #00 ;sh/a0 STA2 ;sh/a2 STA ( reset a0,a1,a2 ) ( x1 * y1 => z1z2 ) #00 ;sh/x1 LDA #00 ;sh/y1 LDA MUL2 ;sh/z2 STA2 ( x0 * y1 => z0z1 ) #00 ;sh/x0 LDA #00 ;sh/y1 LDA MUL2 ;sh/z1 LDA2 ADD2 ;sh/z1 STA2 ( x1 * y0 => a1a2 ) #00 ;sh/x1 LDA #00 ;sh/y0 LDA MUL2 ;sh/a1 STA2 ( x0 * y0 => a0a1 ) #00 ;sh/x0 LDA #00 ;sh/y0 LDA MUL2 ;sh/a0 LDA2 ADD2 ;sh/a0 STA2 ( add z and a<<8 ) #00 ;sh/z1 LDA2 ;sh/z3 LDA ;sh/a0 LDA2 ;sh/a2 LDA #00 ;add32 JSR2 RTN ( multiplication, i.e. * ) @mul32 ( x** y** -> z** ) ,&y1 STR2 ,&y0 STR2 ( save ylo, yhi ) ,&x1 STR2 ,&x0 STR2 ( save xlo, xhi ) ,&y1 LDR2 ,&x1 LDR2 ;mul16 JSR2 ( [x1*y1] ) ,&z1 STR2 ,&z0 STR2 ( sum = x1*y1, save zlo, zhi ) ,&y1 LDR2 ,&x0 LDR2 MUL2 ( [x0*y1]<<16 ) ,&y0 LDR2 ,&x1 LDR2 MUL2 ( [x1*y0]<<16 ) ( [x0*y0]<<32 will completely overflow ) ADD2 ,&z0 LDR2 ADD2 ( sum += x0*y1<<16 + x1*y0<<16 ) ,&z1 LDR2 RTN [ &x0 $2 &x1 $2 &y0 $2 &y1 $2 &z0 $2 &z1 $2 ] ( division, i.e. / ) @div32 ( x** y** -> q** ) ( store y and x for repeated use ) ;div32/div1 STA2 ;div32/div0 STA2 ( y -> div ) ;div32/rem1 STA2 ;div32/rem0 STA2 ( x -> rem ) ( if x < y then the answer is 0 ) ;div32/rem0 LDA2 ;div32/rem1 LDA2 ;div32/div0 LDA2 ;div32/div1 LDA2 ;lt32 JSR2 ,&is-zero JCN ,¬-zero JMP &is-zero #0000 #0000 RTN ( x >= y so the answer is >= 1 ) ¬-zero #0000 ;div32/quo0 STA2 #0000 ;div32/quo1 STA2 ( 0 -> quo ) ( bitcount[x] - bitcount[y] determines the largest multiple of y to try ) ;div32/rem0 LDA2 ;div32/rem1 LDA2 ;bitcount32 JSR2 ( rbits^ ) ;div32/div0 LDA2 ;div32/div1 LDA2 ;bitcount32 JSR2 ( rbits^ dbits^ ) SUB ( shift=rbits-dits ) #00 DUP2 ( shift 0 shift 0 ) ( 1< cur ) #0000 #0001 ROT2 POP ;left-shift JSR2 ;div32/cur1 STA2 ;div32/cur0 STA2 ( div< div ) ;div32/div0 LDA2 ;div32/div1 LDA2 ROT2 POP ;left-shift JSR2 ;div32/div1 STA2 ;div32/div0 STA2 &loop ( if rem >= the current divisor, we can subtract it and add to quotient ) ,&rem0 LDR2 ,&rem1 LDR2 ,&div0 LDR2 ,&div1 LDR2 ;lt32 JSR2 ( rem= div, then we have found a multiple of y that divides x ) ,&rem0 LDR2 ,&rem1 LDR2 ,&div0 LDR2 ,&div1 LDR2 ;sub32 JSR2 ,&rem1 STR2 ,&rem0 STR2 ( rem -= div ) ,&quo0 LDR2 ,&quo1 LDR2 ,&cur0 LDR2 ,&cur1 LDR2 ;add32 JSR2 ,&quo1 STR2 ,&quo0 STR2 ( quo += cur ) &rem-lt ,&div0 LDR2 ,&div1 LDR2 #01 ;right-shift JSR2 ,&div1 STR2 ,&div0 STR2 ( div >>= 1 ) ,&cur0 LDR2 ,&cur1 LDR2 #01 ;right-shift JSR2 ,&cur1 STR2 ,&cur0 STR2 ( cur >>= 1 ) ,&cur0 LDR2 ,&cur1 LDR2 ;non-zero32 JSR2 ,&loop JCN ( if cur>0, loop. else we're done ) ,&quo0 LDR2 ,&quo1 LDR2 ( TODO: consider making this divmod32 ) RTN [ &div0 $2 &div1 $2 &rem0 $2 &rem1 $2 &quo0 $2 &quo1 $2 &cur0 $2 &cur1 $2 ]