( math32.tal ) ( ) ( 32-bit integers are represented by two 16-bit integers ) ( x** means xhi* xlo* ) %DEBUG { #ff #0e DEO } %RTN { JMP2r } %EMIT { #18 DEO } %DIGIT { #00 SWP ;digits ADD2 LDA EMIT } %SPACE { #20 EMIT } %NEWLINE { #0a EMIT } %TOR2 { ROT2 ROT2 } %POP4 { POP2 POP2 } %X { #0000 #0001 } %Y { #1234 #ffff } %Z { #fedc #ba98 } |0100 ( run a bunch of test cases ) #ffff #ffff #2a ;mul16 ;emit-short ;test16 JSR2 #0001 #ffff #2a ;mul16 ;emit-short ;test16 JSR2 #ffff #0001 #2a ;mul16 ;emit-short ;test16 JSR2 #00ff #0001 #2a ;mul16 ;emit-short ;test16 JSR2 NEWLINE #ffff #ffff #ffff #ffff #2a ;mul32 ;emit-long ;test32 JSR2 #0000 #0001 #ffff #ffff #2a ;mul32 ;emit-long ;test32 JSR2 #0000 #0002 #0000 #ffff #2a ;mul32 ;emit-long ;test32 JSR2 #0001 #2345 #0034 #5678 #2a ;mul32 ;emit-long ;test32 JSR2 NEWLINE X Y #2b ;add32 ;emit-long ;test32 JSR2 Z Y #2b ;add32 ;emit-long ;test32 JSR2 #fedc #0000 #1234 #0000 #2b ;add32 ;emit-long ;test32 JSR2 #fedc #0000 #0000 #0000 #2b ;add32 ;emit-long ;test32 JSR2 #0000 #0000 #0000 #0000 #2b ;add32 ;emit-long ;test32 JSR2 NEWLINE #1234 #1234 #0000 #0001 #2d ;sub32 ;emit-long ;test32 JSR2 #1234 #1234 #0000 #1234 #2d ;sub32 ;emit-long ;test32 JSR2 #1234 #1234 #1234 #0001 #2d ;sub32 ;emit-long ;test32 JSR2 #1234 #1234 #1000 #0000 #2d ;sub32 ;emit-long ;test32 JSR2 #1234 #1234 #ffff #ffff #2d ;sub32 ;emit-long ;test32 JSR2 NEWLINE X Y #26 ;and32 ;emit-long ;test32 JSR2 X Y #7c ;or32 ;emit-long ;test32 JSR2 X Y #5e ;xor32 ;emit-long ;test32 JSR2 X Y #3d ;eq32 ;emit-byte ;test32 JSR2 Y Y #3d ;eq32 ;emit-byte ;test32 JSR2 X Y #7e ;ne32 ;emit-byte ;test32 JSR2 X X #7e ;ne32 ;emit-byte ;test32 JSR2 BRK @test16 ( x* y* symbol^ test-addr* emit-addr* -> ) ,&emitaddr STR2 ,&testaddr STR2 ,&testsym STR ,&y STR2 ,&x STR2 ,&x LDR2 ;emit-short JSR2 SPACE ,&testsym LDR EMIT SPACE ,&y LDR2 ;emit-short JSR2 SPACE #3d EMIT SPACE ,&x LDR2 ,&y LDR2 ,&testaddr LDR2 JSR2 ,&emitaddr LDR2 JSR2 NEWLINE RTN &testsym $1 &testaddr $2 &emitaddr $2 &x $2 &y $2 @test32 ( x** y** symbol^ test-addr* emit-addr* -> ) ,&emitaddr STR2 ,&testaddr STR2 ,&testsym STR ,&ylo STR2 ,&yhi STR2 ,&xlo STR2 ,&xhi STR2 ,&xhi LDR2 ,&xlo LDR2 ;emit-long JSR2 SPACE ,&testsym LDR EMIT SPACE ,&yhi LDR2 ,&ylo LDR2 ;emit-long JSR2 SPACE #3d EMIT SPACE ,&xhi LDR2 ,&xlo LDR2 ,&yhi LDR2 ,&ylo LDR2 ,&testaddr LDR2 JSR2 ,&emitaddr LDR2 JSR2 NEWLINE RTN &testsym $1 &testaddr $2 &emitaddr $2 &xhi $2 &xlo $2 &yhi $2 &ylo $2 @eq32 ( xhi* xlo* yhi* ylo* -> bool^ ) ROT2 EQU2 ,&maybe JCN POP4 #00 RTN &maybe EQU2 RTN @ne32 ( xhi* xlo* yhi* ylo* -> bool^ ) ROT2 EQU2 ,&maybe JCN POP4 #01 RTN &maybe NEQ2 RTN @and32 ( xhi* xlo* yhi* ylo* -> xhi|yhi* xlo|ylo* ) ROT2 AND2 TOR2 AND2 SWP2 RTN @or32 ( xhi* xlo* yhi* ylo* -> xhi|yhi* xlo|ylo* ) ROT2 ORA2 TOR2 ORA2 SWP2 RTN @xor32 ( xhi* xlo* yhi* ylo* -> xhi|yhi* xlo|ylo* ) ROT2 EOR2 TOR2 EOR2 SWP2 RTN %COMPLEMENT32 { SWP2 #ffff EOR2 SWP2 #ffff EOR2 } @complement32 ( x** -> ~x** ) COMPLEMENT32 RTN @negate32 ( x** -> -x** ) COMPLEMENT32 INC2 ( ~xhi -xlo ) DUP2 #0000 NEQ2 ( ~xhi -xlo non-zero? ) ,&done JCN ( xlo non-zero => don't inc hi ) SWP2 INC2 SWP2 ( -xhi -xlo ) &done RTN @left-by-16 ( xhi* xlo* -> xlo* 0000 ) SWP2 POP2 #0000 RTN @add32 ( xhi* xlo* yhi* ylo* -> zhi* zlo* ) ,&y2 STR2 ,&y0 STR2 ( save ylo, yhi ) ,&x2 STR2 ,&x0 STR2 ( save xlo, xhi ) #0000 #0000 ,&z0 STR2 ,&z2 STR2 ( reset zhi, zlo ) ( x3 + y3 => z2z3 ) #00 ,&x3 LDR #00 ,&y3 LDR ADD2 ,&z2 STR2 ( x2 + y2 + z2 => z1z2 ) #00 ,&x2 LDR ,&z1 LDR2 ADD2 ,&z1 STR2 #00 ,&y2 LDR ,&z1 LDR2 ADD2 ,&z1 STR2 ( x1 + y1 + z1 => z0z1 ) #00 ,&x1 LDR ,&z0 LDR2 ADD2 ,&z0 STR2 #00 ,&y1 LDR ,&z0 LDR2 ADD2 ,&z0 STR2 ( x0 + y0 + z0 => z0 ) ,&x0 LDR ,&z0 LDR ADD ,&z0 STR ,&y0 LDR ,&z0 LDR ADD ,&z0 STR ( load zhi,zlo ) ,&z0 LDR2 ,&z2 LDR2 RTN ( registers for add32 ) [ &x0 $1 &x1 $1 &x2 $1 &x3 $1 ] [ &y0 $1 &y1 $1 &y2 $1 &y3 $1 ] [ &z0 $1 &z1 $1 &z2 $2 ] @sub32 ( x** y** -> z** ) ;negate32 JSR2 ;add32 JSR2 RTN @mul16 ( x* y* -> z** ) ,&y1 STR ,&y0 STR ( save ylo, yhi ) ,&x1 STR ,&x0 STR ( save xlo, xhi ) #0000 #00 ,&z0 STR2 ,&z2 STR ( reset z0,z1,z2 ) #0000 #00 ,&a0 STR2 ,&a2 STR ( reset a0,a1,a2 ) ( x1 * y1 => z1z2 ) #00 ,&x1 LDR #00 ,&y1 LDR MUL2 ,&z1 STR2 ( x0 * y1 => z0z1 ) #00 ,&x0 LDR #00 ,&y1 LDR MUL2 ,&z0 LDR2 ADD2 ,&z0 STR2 ( x1 * y0 => a1a2 ) #00 ,&x1 LDR #00 ,&y0 LDR MUL2 ,&a1 STR2 ( x0 * y0 => a0a1 ) #00 ,&x0 LDR #00 ,&y0 LDR MUL2 ,&a0 LDR2 ADD2 ,&a0 STR2 ( add z and a<<8 ) #00 ,&z0 LDR2 ,&z2 LDR ,&a0 LDR2 ,&a2 LDR #00 ;add32 JSR2 RTN [ &x0 $1 &x1 $1 ] [ &y0 $1 &y1 $1 ] [ &z0 $1 &z1 $1 &z2 $1 ] [ &a0 $1 &a1 $1 &a2 $1 ] @mul32 ( x** y** -> z** ) ,&y1 STR2 ,&y0 STR2 ( save ylo, yhi ) ,&x1 STR2 ,&x0 STR2 ( save xlo, xhi ) ,&y1 LDR2 ,&x1 LDR2 ;mul16 JSR2 ( [x1*y1] ) ,&z1 STR2 ,&z0 STR2 ( sum = x1*y1, save zlo, zhi ) ,&y1 LDR2 ,&x0 LDR2 MUL2 ( [x0*y1]<<16 ) ,&y0 LDR2 ,&x1 LDR2 MUL2 ( [x1*y0]<<16 ) ( [x0*y0]<<32 will completely overflow ) ADD2 ,&z0 LDR2 ADD2 ( sum += x0*y1<<16 + x1*y0<<16 ) ,&z1 LDR2 RTN [ &x0 $2 &x1 $2 ] [ &y0 $2 &y1 $2 ] [ &z0 $2 &z1 $2 ] @emit-long ( hi* lo* -> ) SWP2 ( lo* hi* ) ;emit-short JSR2 ;emit-short JSR2 RTN %EMIT-BYTE { DUP #04 SFT DIGIT #0f AND DIGIT } @emit-short ( x* -> ) SWP ( lo^ hi^ ) EMIT-BYTE EMIT-BYTE RTN @emit-byte ( x^ -> ) EMIT-BYTE RTN @digits 30 31 32 33 34 35 36 37 38 39 61 62 63 64 65 66