Improved examples
This commit is contained in:
parent
d22ed88f6e
commit
d8cefb2923
|
@ -1,3 +1,5 @@
|
|||
?(?0 ()) (This example demonstrates how to implement combinatory calculus.)
|
||||
|
||||
<> (M ?x) (?x ?x)
|
||||
<> (KI ?x ?y) (?y)
|
||||
<> (T ?x ?y) (?y ?y)
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
<> (NAME) (Modal)
|
||||
<> (?: print $) (?:)
|
||||
<> ($ ?x) (?x $)
|
||||
?(?0 ()) (This example prints to the console and demonstrates how to delay the execution of a rule.)
|
||||
|
||||
$ (Welcome to NAME \nHave fun!\n\n) print
|
||||
<> (NAME) (Modal)
|
||||
<> (?: print) (?:)
|
||||
<> (delay ?x) (?x delay)
|
||||
|
||||
delay (Welcome to NAME \nHave fun!\n\n) print
|
|
@ -1,3 +1,5 @@
|
|||
?(?0 ()) (This example requests 3 line delimited strings from the console.)
|
||||
|
||||
<> (read ?~) (?~)
|
||||
<> (?: print ') (?:)
|
||||
<> (' ?x) (?x ')
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
?(?0 ()) (This example demonstrates how to keep the runtime active between prompts.)
|
||||
|
||||
<> ((You said: quit\n) send) ((You quit.) print ')
|
||||
<> (?: print ') (?:)
|
||||
<> (?: send) (?: wait stdin)
|
|
@ -1,3 +1,5 @@
|
|||
?(?0 ()) (This example prints hello world to the console.)
|
||||
|
||||
<> (send ?:) (?:)
|
||||
|
||||
send (hello world)
|
|
@ -1,199 +0,0 @@
|
|||
<> (-- ?x) ()
|
||||
-- ( little endian binary integers )
|
||||
|
||||
-- ( constants )
|
||||
<> zero ((0 ()))
|
||||
<> one ((1 ()))
|
||||
<> ten ((0 (1 (0 (1 ())))))
|
||||
|
||||
-- ( decimal digit to binary )
|
||||
<> ((binary 0)) ((0 ()))
|
||||
<> ((binary 1)) ((1 ()))
|
||||
<> ((binary 2)) ((0 (1 ())))
|
||||
<> ((binary 3)) ((1 (1 ())))
|
||||
<> ((binary 4)) ((0 (0 (1 ()))))
|
||||
<> ((binary 5)) ((1 (0 (1 ()))))
|
||||
<> ((binary 6)) ((0 (1 (1 ()))))
|
||||
<> ((binary 7)) ((1 (1 (1 ()))))
|
||||
<> ((binary 8)) ((0 (0 (0 (1 ())))))
|
||||
<> ((binary 9)) ((1 (0 (0 (1 ())))))
|
||||
|
||||
-- ( binary to decimal digit )
|
||||
<> ((decimal (0 ()))) (0)
|
||||
<> ((decimal (1 ()))) (1)
|
||||
<> ((decimal (0 (1 ())))) (2)
|
||||
<> ((decimal (1 (1 ())))) (3)
|
||||
<> ((decimal (0 (0 (1 ()))))) (4)
|
||||
<> ((decimal (1 (0 (1 ()))))) (5)
|
||||
<> ((decimal (0 (1 (1 ()))))) (6)
|
||||
<> ((decimal (1 (1 (1 ()))))) (7)
|
||||
<> ((decimal (0 (0 (0 (1 ())))))) (8)
|
||||
<> ((decimal (1 (0 (0 (1 ())))))) (9)
|
||||
|
||||
-- reverse ()-terminated list
|
||||
<> (reverse ?x) (reverse1 () ?x)
|
||||
<> (reverse1 ?a ()) (?a)
|
||||
<> (reverse1 ?a (?h ?t)) (reverse1 (?h ?a) ?t)
|
||||
|
||||
-- ( to integer )
|
||||
<> ((int ?*)) ((sum f (one) g reverse (?*)))
|
||||
<> (g ()) (())
|
||||
<> (g (?h ?t)) (((binary ?h) g ?t))
|
||||
<> (f (?u) ()) (())
|
||||
<> (f (?u) (?h ?t)) (((mul ?h ?u) f ((mul ?u ten)) ?t))
|
||||
|
||||
-- ( to binary str )
|
||||
-- ( <> ((bstr ?x)) (emit force (0 (b ?x))) )
|
||||
-- ( <> ((bstr ?x)) ((bstr1 () ?x)) )
|
||||
<> ((bstr ?x)) ((bstr1 force ?x ()))
|
||||
<> ((bstr1 force/r () ?a)) (emit force/r (0 (b ?a)))
|
||||
<> ((bstr1 force/r (?h ?t) ?a)) ((bstr1 force/r ?t (?h ?a)))
|
||||
|
||||
-- ( to string: TODO, need division for this one )
|
||||
<> ((str ?x)) ((str1 ?x ()))
|
||||
<> ((str1 (0 ()) ?a)) (emit force ?a)
|
||||
<> ((str1 (?h ?t) ?a)) ((str2 (divmod (?h ?t) ten) ?a))
|
||||
<> ((str2 (?q ?r) ?a)) ((str1 ?q ((decimal ?r) ?a)))
|
||||
|
||||
-- ( force a list to evaluate to digits/letters )
|
||||
<> ((?h force/r ?t)) (force/r (?h ?t))
|
||||
<> (force ()) (force/r ())
|
||||
<> (force (0 ?t)) ((0 force ?t))
|
||||
<> (force (1 ?t)) ((1 force ?t))
|
||||
<> (force (2 ?t)) ((2 force ?t))
|
||||
<> (force (3 ?t)) ((3 force ?t))
|
||||
<> (force (4 ?t)) ((4 force ?t))
|
||||
<> (force (5 ?t)) ((5 force ?t))
|
||||
<> (force (6 ?t)) ((6 force ?t))
|
||||
<> (force (7 ?t)) ((7 force ?t))
|
||||
<> (force (8 ?t)) ((8 force ?t))
|
||||
<> (force (9 ?t)) ((9 force ?t))
|
||||
<> (force (a ?t)) ((a force ?t))
|
||||
<> (force (b ?t)) ((b force ?t))
|
||||
<> (force (c ?t)) ((c force ?t))
|
||||
<> (force (d ?t)) ((d force ?t))
|
||||
<> (force (e ?t)) ((e force ?t))
|
||||
<> (force (f ?t)) ((f force ?t))
|
||||
<> (force (x ?t)) ((x force ?t))
|
||||
|
||||
-- ( emit )
|
||||
<> (emit force/r ?*) (?*)
|
||||
|
||||
-- ( comparison operartions )
|
||||
<> ((cmp ?x ?y)) ((cmpc #eq ?x ?y))
|
||||
<> ((cmpc ?e () ())) (?e)
|
||||
<> ((cmpc ?e (1 ?x) ())) (#gt)
|
||||
<> ((cmpc ?e (0 ?x) ())) ((cmpc ?e ?x ()))
|
||||
<> ((cmpc ?e () (1 ?y))) (#lt)
|
||||
<> ((cmpc ?e () (0 ?y))) ((cmpc ?e () ?y))
|
||||
<> ((cmpc ?e (0 ?x) (0 ?y))) ((cmpc ?e ?x ?y))
|
||||
<> ((cmpc ?e (1 ?x) (0 ?y))) ((cmpc #gt ?x ?y))
|
||||
<> ((cmpc ?e (0 ?x) (1 ?y))) ((cmpc #lt ?x ?y))
|
||||
<> ((cmpc ?e (1 ?x) (1 ?y))) ((cmpc ?e ?x ?y))
|
||||
|
||||
-- ( addition )
|
||||
<> ((add ?x ?y)) ((addc 0 ?x ?y))
|
||||
<> ((addc 0 () ())) (())
|
||||
<> ((addc 1 () ())) ((1 ()))
|
||||
-- ( <> ((addc ?c ?x ())) ((addc ?c ?x (0 ()))) )
|
||||
-- ( <> ((addc ?c () ?y)) ((addc ?c (0 ()) ?y)) )
|
||||
<> ((addc 0 ?x ())) (?x)
|
||||
<> ((addc 0 () ?y)) (?y)
|
||||
<> ((addc 1 ?x ())) ((addc 1 ?x (0 ())))
|
||||
<> ((addc 1 () ?y)) ((addc 1 (0 ()) ?y))
|
||||
<> ((addc 0 (0 ?x) (0 ?y))) ((0 (addc 0 ?x ?y)))
|
||||
<> ((addc 0 (0 ?x) (1 ?y))) ((1 (addc 0 ?x ?y)))
|
||||
<> ((addc 0 (1 ?x) (0 ?y))) ((1 (addc 0 ?x ?y)))
|
||||
<> ((addc 0 (1 ?x) (1 ?y))) ((0 (addc 1 ?x ?y)))
|
||||
<> ((addc 1 (0 ?x) (0 ?y))) ((1 (addc 0 ?x ?y)))
|
||||
<> ((addc 1 (0 ?x) (1 ?y))) ((0 (addc 1 ?x ?y)))
|
||||
<> ((addc 1 (1 ?x) (0 ?y))) ((0 (addc 1 ?x ?y)))
|
||||
<> ((addc 1 (1 ?x) (1 ?y))) ((1 (addc 1 ?x ?y)))
|
||||
|
||||
-- ( summation )
|
||||
<> ((sum ())) ((0 ()))
|
||||
<> ((sum (?a ()))) (?a)
|
||||
<> ((sum (?a (?b ?c)))) ((sum ((add ?a ?b) ?c)))
|
||||
|
||||
-- ( multiplication )
|
||||
<> ((mul ?x ?y)) ((mulc () ?x ?y))
|
||||
<> ((mulc ?t () ?y)) ((sum ?t))
|
||||
<> ((mulc ?t (0 ?x) ?y)) ((mulc ?t ?x (0 ?y)))
|
||||
<> ((mulc ?t (1 ?x) ?y)) ((mulc (?y ?t) ?x (0 ?y)))
|
||||
|
||||
-- ( subtraction )
|
||||
<> ((sub ?x ?y)) (sub1 0 ?x ?y ())
|
||||
<> (sub1 0 () () ?s) (())
|
||||
<> (sub1 1 () () ?s) (#err)
|
||||
<> (sub1 ?c ?x () ?s) (sub1 ?c ?x (0 ()) ?s)
|
||||
<> (sub1 ?c () ?y ?s) (sub1 ?c (0 ()) ?y ?s)
|
||||
<> (sub1 0 (0 ?x) (0 ?y) ?s) (sub1 0 ?x ?y (0 ?s))
|
||||
<> (sub1 0 (0 ?x) (1 ?y) ?s) (sub2 1 ?x ?y ?s)
|
||||
<> (sub1 0 (1 ?x) (0 ?y) ?s) (sub2 0 ?x ?y ?s)
|
||||
<> (sub1 0 (1 ?x) (1 ?y) ?s) (sub1 0 ?x ?y (0 ?s))
|
||||
<> (sub1 1 (0 ?x) (0 ?y) ?s) (sub2 1 ?x ?y ?s)
|
||||
<> (sub1 1 (0 ?x) (1 ?y) ?s) (sub1 1 ?x ?y (0 ?s))
|
||||
<> (sub1 1 (1 ?x) (0 ?y) ?s) (sub1 0 ?x ?y (0 ?s))
|
||||
<> (sub1 1 (1 ?x) (1 ?y) ?s) (sub2 1 ?x ?y ?s)
|
||||
<> (sub2 ?c ?x ?y ()) ((1 sub1 ?c ?x ?y ()))
|
||||
<> (sub2 ?c ?x ?y (?h ?t)) ((0 sub2 ?c ?x ?y ?t))
|
||||
|
||||
<> (dec (0 ())) (#err)
|
||||
<> (dec (1 ())) ((0 ()))
|
||||
<> (dec (1 ?t)) ((0 ?t))
|
||||
<> (dec (0 ?t)) (dec1 (0 ?t))
|
||||
<> (dec1 (1 ())) (())
|
||||
<> (dec1 (1 ?t)) ((0 ?t))
|
||||
<> (dec1 (0 ?t)) ((1 dec1 ?t))
|
||||
|
||||
-- ( inc )
|
||||
<> ((inc ())) ((1 ()))
|
||||
<> ((inc (0 ?t))) ((1 ?t))
|
||||
<> ((inc (1 ?t))) ((0 (inc ?t)))
|
||||
|
||||
-- ( left shift; lshift x b means x<<b )
|
||||
<> ((lshift ?x (0 ()))) (?x)
|
||||
<> ((lshift ?x (1 ()))) ((0 ?x))
|
||||
<> ((lshift ?x (0 (?a ?b)))) ((lshift (0 ?x) dec (0 (?a ?b))))
|
||||
<> ((lshift ?x (1 (?a ?b)))) ((lshift (0 ?x) (0 (?a ?b))))
|
||||
|
||||
<> ((rshift1 (?a ()))) ((0 ()))
|
||||
<> ((rshift1 (?a (?b ?c)))) ((?b ?c))
|
||||
|
||||
-- ( divmod, i.e. quotient and remainder )
|
||||
-- ( x is the dividend, or what's left of it )
|
||||
-- ( y is the divisor )
|
||||
-- ( s is the number of bits to shift, so far )
|
||||
-- ( o is the next valuet o add to the quotient )
|
||||
-- ( m is the next multiple of y to work with )
|
||||
-- ( d is the quotient, so far )
|
||||
<> ((divmod ?x ?y)) ((divmod1 ?x ?y (cmp ?x ?y)))
|
||||
<> ((divmod1 ?x ?y #lt)) ((zero ?x))
|
||||
<> ((divmod1 ?x ?y #eq)) ((one zero))
|
||||
<> ((divmod1 ?x ?y #gt)) ((divmod2 ?x ?y zero ?y))
|
||||
|
||||
<> ((divmod2 ?x ?y ?s ?m)) ((divmod3 ?x ?y ?s ?m (cmp ?x (0 ?m))))
|
||||
<> ((divmod3 ?x ?y ?s ?m #gt)) ((divmod2 ?x ?y (inc ?s) (0 ?m)))
|
||||
<> ((divmod3 ?x ?y ?s ?m #eq)) ((divmod4 ?x ?y (inc ?s) (0 ?m) zero))
|
||||
<> ((divmod3 ?x ?y ?s ?m #lt)) ((divmod4 ?x ?y ?s ?m zero))
|
||||
|
||||
<> ((divmod4 ?x ?y (0 ()) ?m ?d)) (((add ?d one) (sub ?x ?y)))
|
||||
<> ((divmod4 ?x ?y ?s ?m ?d)) ((divmod5 (sub ?x ?m) ?y dec ?s (rshift1 ?m) (add ?d (lshift one ?s))))
|
||||
|
||||
<> ((divmod5 (0 ()) ?y ?s ?m ?d)) ((?d (0 ())))
|
||||
<> ((divmod5 ?x ?y ?s ?m ?d)) ((divmod6 ?x ?y ?s ?m ?d (cmp ?x ?m)))
|
||||
|
||||
<> ((divmod6 ?x ?y (0 ()) ?m ?d #lt)) ((?d ?x))
|
||||
<> ((divmod6 ?x ?y ?s ?m ?d #lt)) ((divmod5 ?x ?y dec ?s (rshift1 ?m) ?d))
|
||||
<> ((divmod6 ?x ?y ?s ?m ?d #eq)) ((divmod4 ?x ?y ?s ?m ?d))
|
||||
<> ((divmod6 ?x ?y ?s ?m ?d #gt)) ((divmod4 ?x ?y ?s ?m ?d))
|
||||
|
||||
-- ( floor divison )
|
||||
<> ((div ?x ?y)) ((div1 (divmod ?x ?y)))
|
||||
<> ((div1 (?q ?r))) (?q)
|
||||
|
||||
-- ( remainder )
|
||||
<> ((mod ?x ?y)) ((mod1 (divmod ?x ?y)))
|
||||
<> ((mod1 (?q ?r))) (?r)
|
||||
|
||||
(bstr (mul (int 123456789) (int 987654321)))
|
|
@ -1,50 +0,0 @@
|
|||
<> (written by) (capital)
|
||||
<> (?: print) (?:)
|
||||
|
||||
<> (?* explode) ((List (?*)))
|
||||
<> ((List ?*) implode) (?*)
|
||||
|
||||
<> (MkEmpty) (_________________________________ explode)
|
||||
|
||||
<> ((List (?1 (?2 ?l))) MkWindow) ((Window (?1 ?2) ?l))
|
||||
|
||||
<> ((Window (?1 ?2) ( )) roll) ((WindowExhausted))
|
||||
<> ((Window (?1 ?2) (?3 )) roll) ((Window (?1 ?2 ?3) ()))
|
||||
<> ((Window (?1 ?2) (?3 ?l)) roll) ((Window (?1 ?2 ?3) ?l))
|
||||
|
||||
<> ((Window (?1 ?2 ?3) ( )) roll) ((Window (?2 ?3 ) ()))
|
||||
<> ((Window (?1 ?2 ?3) (?4 )) roll) ((Window (?2 ?3 ?4) ()))
|
||||
<> ((Window (?1 ?2 ?3) (?4 ?l)) roll) ((Window (?2 ?3 ?4) ?l))
|
||||
|
||||
|
||||
<> (?p apply-rule) ((Rule (?p explode MkWindow MkEmpty apply-rule)) implode)
|
||||
<> ((Window (?1 ?2 ?3) ()) (List (?h ?t)) apply-rule) ((?1 ?2 ?3) cell-state ((?2 ?3) cell-state (Rule')))
|
||||
<> ((Window ?v ?l) (List (?h ?t)) apply-rule) ( ?v cell-state ((Window ?v ?l) roll (List ?t) apply-rule))
|
||||
|
||||
<> (Rule (Rule' ?l)) (List ?l)
|
||||
<> (?y (Rule' )) (Rule' (?y))
|
||||
<> (?x (Rule' ?y)) (Rule' (?x ?y))
|
||||
|
||||
<> ((* * *) cell-state) (_)
|
||||
<> ((* * _) cell-state) (*)
|
||||
<> ((* _ *) cell-state) (_)
|
||||
<> ((* _ _) cell-state) (*)
|
||||
<> ((_ * *) cell-state) (*)
|
||||
<> ((_ * _) cell-state) (_)
|
||||
<> ((_ _ *) cell-state) (*)
|
||||
<> ((_ _ _) cell-state) (_)
|
||||
|
||||
<> ((* _) cell-state) (*)
|
||||
<> ((_ *) cell-state) (*)
|
||||
<> ((_ _) cell-state) (_)
|
||||
|
||||
<> ((Gas ?f) ?p (?r) MkTriangle) ((Triangle ((Gas ?f) ?p (?r) build)))
|
||||
<> ((Gas (?g ?f)) ?p (?r) build) (?p ((Gas ?f) ?p ?r (?r) build))
|
||||
<> ((Gas (Empty)) ?p ?r build) (?p (Triangle'))
|
||||
|
||||
<> (Triangle (Triangle' ?l)) (List (\n ?l))
|
||||
<> (?y (Triangle' )) (Triangle' (?y (\n (\n))))
|
||||
<> (?x (Triangle' ?y)) (Triangle' (?x (\n ?y)))
|
||||
|
||||
|
||||
(Gas (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (Empty))))))))))))))))) ________________*________________ (apply-rule) MkTriangle implode print
|
|
@ -1,3 +1,5 @@
|
|||
?(?0 ()) (This example reverses the string modal, into ladom.)
|
||||
|
||||
<> (reverse List () ?*) (?*)
|
||||
<> (reverse (?*)) (reverse List (?*) ())
|
||||
<> (reverse List (?x ?y) ?z) (reverse List ?y (?x ?z))
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
-- (Tic Tac Toe)
|
||||
?(?0 ()) (This example demonstrates how to implement a 2-players game of Tic Tac Toe)
|
||||
|
||||
<> (-- ?x) ()
|
||||
<> (READ ?~) (?~)
|
||||
|
|
Loading…
Reference in New Issue