Updated arithmetic example with wryls fixes
This commit is contained in:
parent
52e6c5d89a
commit
df1a4ed32b
|
@ -1,6 +1,6 @@
|
||||||
<> (add (s ?x) (s ?y)) ((s add ?x (s ?y)))
|
<> (add (s ?x) (s ?y)) (s (add ?x (s ?y)))
|
||||||
<> (add (s ?y) (0)) ((s ?y))
|
<> (add (s ?x) (0)) (s ?x)
|
||||||
<> (add (0) (s ?y)) ((s ?y))
|
<> (add (0) (s ?y)) (s ?y)
|
||||||
<> (add (0) (0)) (0)
|
<> (add (0) (0)) (0)
|
||||||
|
|
||||||
<> (subtract (s ?x) (s ?y)) (subtract ?x ?y)
|
<> (subtract (s ?x) (s ?y)) (subtract ?x ?y)
|
||||||
|
@ -8,7 +8,7 @@
|
||||||
<> (subtract (0) (s ?y)) (s ?y)
|
<> (subtract (0) (s ?y)) (s ?y)
|
||||||
<> (subtract (0) (0)) (0)
|
<> (subtract (0) (0)) (0)
|
||||||
|
|
||||||
<> (multiply (s ?x) (s ?y)) (add (s ?x) (multiply (s ?x) (subtract (s ?y) (s (0))))
|
<> (multiply (s ?x) (s ?y)) (add (s ?x) (multiply (s ?x) (subtract (s ?y) (s (0)))))
|
||||||
<> (multiply (s ?x) (s (0)) (s ?x)
|
<> (multiply (s ?x) (s (0)) (s ?x)
|
||||||
<> (multiply (s (0)) (s ?y) (s ?y)
|
<> (multiply (s (0)) (s ?y) (s ?y)
|
||||||
<> (multiply (s ?x) (0)) (0)
|
<> (multiply (s ?x) (0)) (0)
|
||||||
|
@ -17,7 +17,8 @@
|
||||||
<> (?x + ?y) (add ?x ?y)
|
<> (?x + ?y) (add ?x ?y)
|
||||||
<> (?x - ?y) (subtract ?x ?y)
|
<> (?x - ?y) (subtract ?x ?y)
|
||||||
<> (?x * ?y) (multiply ?x ?y)
|
<> (?x * ?y) (multiply ?x ?y)
|
||||||
<> (factorial (s (0))) ((s (0)))
|
|
||||||
<> (factorial (s ?x)) ((s ?x) * factorial ((s ?x) - (s (0))))
|
|
||||||
|
|
||||||
(s (0)) * (s (s (0)))
|
<> (factorial (s (0))) ((s (0)))
|
||||||
|
<> (factorial (s ?x)) (((s ?x) * factorial ((s ?x) - (s (0)))))
|
||||||
|
|
||||||
|
factorial (s (s (s (s (s (0))))))
|
||||||
|
|
|
@ -1,23 +1,5 @@
|
||||||
<> (add (s ?x) (s ?y)) ((s add ?x (s ?y)))
|
<> (?x dup) (?x ?x)
|
||||||
<> (add (s ?y) (0)) ((s ?y))
|
<> (?x ?y swap) (?y ?x)
|
||||||
<> (add (0) (s ?y)) ((s ?y))
|
<> ( ?x pop) ()
|
||||||
<> (add (0) (0)) (0)
|
|
||||||
|
|
||||||
<> (subtract (s ?x) (s ?y)) (subtract ?x ?y)
|
(1 2 3) (4 5 6) swap pop dup
|
||||||
<> (subtract (s ?x) (0)) (s ?x)
|
|
||||||
<> (subtract (0) (s ?y)) (s ?y)
|
|
||||||
<> (subtract (0) (0)) (0)
|
|
||||||
|
|
||||||
<> (multiply (s ?x) (s ?y)) (add (s ?x) (multiply (s ?x) (subtract (s ?y) (s (0))))
|
|
||||||
<> (multiply (s ?x) (s (0)) (s ?x)
|
|
||||||
<> (multiply (s (0)) (s ?y) (s ?y)
|
|
||||||
<> (multiply (s ?x) (0)) (0)
|
|
||||||
<> (multiply (0) (s ?x)) (0)
|
|
||||||
|
|
||||||
<> (?x + ?y) (add ?x ?y)
|
|
||||||
<> (?x - ?y) (subtract ?x ?y)
|
|
||||||
<> (?x * ?y) (multiply ?x ?y)
|
|
||||||
<> (factorial (s (0))) ((s (0)))
|
|
||||||
<> (factorial (s ?x)) ((s ?x) * factorial ((s ?x) - (s (0))))
|
|
||||||
|
|
||||||
(s (0)) * (s (s (0)))
|
|
||||||
|
|
Loading…
Reference in New Issue