branch : pmacs2
This commit is contained in:
moculus 2007-10-22 00:56:15 +00:00
parent bba25c8097
commit acc68f5066
5 changed files with 0 additions and 1905 deletions

View File

@ -1,326 +0,0 @@
import re, sys
from lex import Token
color_list = []
color_list.extend(['\033[3%dm' % x for x in range(0, 8)])
color_list.extend(['\033[3%d;1m' % x for x in range(0, 8)])
color_list.extend(['\033[0m'])
color_names = [
'black', 'dred', 'dgreen', 'brown', 'dblue', 'dpurple', 'dcyan', 'lgrey',
'dgrey', 'lred', 'lgreen', 'yellow', 'lblue', 'lpurple', 'lcyan', 'white',
'unset',
]
color_dict ={}
for i in range(0, len(color_list)):
color_dict[color_names[i]] = color_list[i]
def token_match(self, token, name, data=None):
return token.fqname() == name and data is None or token.string == data
def token_match2(self, token, name, regex):
return token.fqname() == name and regex.match(token.string)
def token_vmatch(self, token, *pairs):
for (name, data) in pairs:
if token_match(token, name, data):
return True
return False
def token_vmatch2(self, token, *pairs):
for (name, regex) in pairs:
if token_match(token, name, regex):
return True
return False
class Highlighter:
def __init__(self, lexer):
self.lexer = lexer
self.tokens = []
def dump(self, fmt='(%3s, %2s) | %s'):
print fmt % ('y', 'x', 'string')
for i in range(0, len(self.tokens)):
group = self.tokens[i]
print 'LINE %d' % i
for token in group:
print fmt % (token.y, token.x, token.string)
def display(self, token_colors={}, debug=False):
for group in self.tokens:
for token in group:
color_name = None
name_parts = token.name.split('.')
for i in range(0, len(name_parts)):
if '.'.join(name_parts[i:]) in token_colors:
color_name = token_colors['.'.join(name_parts[i:])]
break
if color_name is not None:
sys.stdout.write(color_dict[color_name])
pass
elif debug:
raise Exception, "no highlighting for %r" % token.name
else:
color_name = 'white'
sys.stdout.write(color_dict[color_name])
sys.stdout.write(token.string)
sys.stdout.write('\n')
def delete_token(self, y, i):
assert y < len(self.tokens), "%d < %d" % (y, len(self.tokens))
assert i < len(self.tokens[y]), "%d < %d" % (i, len(self.tokens[i]))
deleted = []
deleted.append(self.tokens[y].pop(i))
while y < len(self.tokens):
while i < len(self.tokens[y]):
while deleted and self.tokens[y][i].parent is not deleted[-1]:
del deleted[-1]
if not deleted:
return
elif self.tokens[y][i].parent is deleted[-1]:
deleted.append(self.tokens[y].pop(i))
else:
raise Exception, "huh?? %r %r" % (self.tokens[y][i].parent,
deleted)
i = 0
y += 1
def highlight(self, lines):
self.tokens = [[] for l in lines]
#self.lexer.lex(lines, y=0, x=0)
#for token in self.lexer:
for token in self.lexer.lex(lines, y=0, x=0):
self.tokens[token.y].append(token)
# relexing
# ======================
def relex(self, lines, y1, x1, y2, x2, token=None):
if token:
gen = self.lexer.resume(lines, y1, 0, token)
else:
gen = self.lexer.lex(lines, y1, 0)
# these keep track of the current y coordinate, the current token index
# on line[y], and the current "new token", respectively.
y = y1
i = 0
getnext = True
new_token = None
while True:
# if we have overstepped our bounds, then exit!
if y >= len(lines):
break
# if we need another new_token, then try to get it.
if getnext:
try:
#new_token = self.lexer.next()
new_token = gen.next()
getnext = False
except StopIteration:
# ok, so this means that ALL the rest of the tokens didn't
# show up, because we're done. so delete them and exit
for j in range(y, len(lines)):
del self.tokens[j][i:]
i = 0
break
# if our next token is one a future line, we need to just get rid of
# all our old tokens until we get there
while new_token.y > y:
del self.tokens[y][i:]
i = 0
y += 1
# ok, so see if we have current tokens on this line; if so get it
if i < len(self.tokens[y]):
old_token = self.tokens[y][i]
assert old_token.y == y, "%d == %d" % (old_token.y, y)
else:
#raise Exception, "K %d %r" % (i, new_token)
old_token = None
if old_token is None:
#raise Exception, "J %d %r" % (i, new_token)
# since we don't have a previous token at this location, just
# insert the new one
self.tokens[y].insert(i, new_token)
i += 1
getnext = True
elif old_token == new_token:
# if they match, then leave the old one alone
i += 1
getnext = True
if new_token.y > y2:
# in this case, we can be sure that the rest of the lines
# will lex the same way
break
elif old_token.x < new_token.end_x():
# ok, so we haven't gotten to this new token yet. obviously
# this token never showed up in the new lexing, so delete it.
del self.tokens[y][i]
elif old_token.x >= new_token.end_x():
# ok, this token is further out, so just insert the new token
# ahead of it, move our counter out and continue
self.tokens[y].insert(i, new_token)
i += 1
getnext = True
else:
# this should never happen
raise Exception, "this isn't happening"
# deletion
# ======================
def update_del(self, lines, y1, x1, y2, x2):
assert y1 >= 0
assert y1 <= y2
# first let's delete any token who falls in the range of the change (or,
# in the case of child tokens, whose parent is being deleted).
y = y1
i = 0
done = False
if self.tokens[y1]:
ctoken = self.tokens[y1][0]
else:
ctoken = None
while not done:
if y >= len(self.tokens):
break
if i < len(self.tokens[y]):
# figure out if this token is in our range. notice that
# delete_token() will take care of the need to recursively
# delete children for us
token = self.tokens[y][i]
if token.y > y2 or y == y2 and token.x >= x2:
done = True
elif token.y < y1 or token.y == y1 and token.x < x1:
i += 1
else:
self.delete_token(y, i)
y += 1
i = 0
# ok, so now we need to "adjust" the (x,y) coordinates of all the tokens
# after the change. first we will copy over the pre-deletion tokens.
newtokens = [[] for x in range(0, len(self.tokens) - y2 + y1)]
for y in range(0, y1):
for token in self.tokens[y]:
newtokens[y].append(token)
# then the tokens which occured on the same line as the end of the
# deletion.
for token in self.tokens[y1]:
newtokens[y1].append(token)
if y2 != y1:
for token in self.tokens[y2]:
token.x = token.x - x2 + x1
token.y = y1
newtokens[y1].append(token)
# finally, we will copy over the tokens from subsequent lines
for y in range(y2 + 1, len(self.tokens)):
for token in self.tokens[y]:
token.y = token.y - y2 + y1
newtokens[y - y2 + y1].append(token)
# now save our new tokens
self.tokens = newtokens
return ctoken
def relex_del(self, lines, y1, x1, y2, x2):
# first let's update our existing tokens to fix their offsets, etc.
ctoken = self.update_del(lines, y1, x1, y2, x2)
# then let's do some relexing
self.relex(lines, y1, x1, y2, x2, ctoken)
# addition
# ======================
def update_add(self, lines, y1, x1, newlines):
assert y1 >= 0
assert len(newlines) > 0
y2 = y1 + len(newlines) - 1
if y2 == y1:
x2 = x1 + len(newlines[0])
else:
x2 = len(newlines[-1])
xdelta = x2 - x1
ydelta = y2 - y1
if self.tokens[y1]:
ctoken = self.tokens[y1][0]
else:
ctoken = None
# construct a new token data structure, with the right number of lines
newtokens = []
for i in range(0, len(self.tokens) + ydelta):
newtokens.append([])
# copy the tokens that show up before the changed line
for y in range(0, y1):
newtokens[y] = self.tokens[y]
# process the tokens that show up on the changed line
post_change_list = []
for t in self.tokens[y1]:
tx1 = t.x
tx2 = t.x + len(t.string)
ty = t.y
ts = t.string
if tx2 <= x1:
# '*| ' before the insertion
newtokens[y1].append(t)
elif tx1 >= x1:
# ' |*' after the insertion
t.x += xdelta
t.y = y2
post_change_list.append(t)
else:
# '*|*' around the insertion
t1 = t.copy()
t1.string = t.string[:x1 - tx1]
newtokens[y1].append(t1)
t2 = t.copy()
t2.string = t.string[x1 - tx1:]
t2.x = x2
t2.y = y2
post_change_list.append(t2)
# add in the new data
newtokens[y1].append(Token('new', '', y1, x1, newlines[0]))
for i in range(1, len(newlines)):
yi = y1 + i
newtokens[yi].append(Token('new', '', yi, 0, newlines[i]))
# add the post-change tokens back
for t in post_change_list:
newtokens[y2].append(t)
# for each subsequent line, fix it's tokens' y coordinates
for y in range(y1 + 1, len(self.tokens)):
for t in self.tokens[y]:
t.y += ydelta
newtokens[t.y].append(t)
# ok, now that we have built a correct new structure, store a reference
# to it instead.
self.tokens = newtokens
return ctoken
def relex_add(self, lines, y1, x1, newlines):
# first let's update our existing tokens to fix their offsets, etc.
ctoken = self.update_add(lines, y1, x1, newlines)
# create some extra info that we need
y2 = y1 + len(newlines) - 1
if y2 == y1:
x2 = x1 + len(newlines[0])
else:
x2 = len(newlines[-1])
# now let's start the relexing process
self.relex(lines, y1, x1, y2, x2, ctoken)

455
lex3.py
View File

@ -1,455 +0,0 @@
import curses, re
import regex, util
from point import Point
class Token(object):
def __init__(self, name, rule, y, x, s, color=None, parent=None, matchd={}, link=None):
self.name = name
self.rule = rule
self.y = y
self.x = x
self.string = s
self.color = color
self.parent = parent
self.matchd = matchd
self.link = link
assert parent is None or hasattr(parent, 'name'), 'oh no %r' % parent
def parents(self):
if self.parent is not None:
parents = self.parent.parents()
parents.append(self.parent)
return parents
else:
return []
def domain(self):
if self.parent is not None:
names = self.parent.domain()
else:
names = []
if self.link and not self.link.startswith('middle'):
names.append(self.rule.name)
return names
def fqlist(self):
if self.parent is not None:
names = self.parent.domain()
else:
names = []
if self.link == 'start':
names.append(self.rule.name)
names.append(self.name)
return names
def fqname(self):
names = self.fqlist()
return '.'.join(names)
def copy(self):
return Token(self.name, self.rule, self.y, self.x, self.string,
self.color, self.parent, self.matchd, self.link)
def add_to_string(self, s):
self.string += s
def end_x(self):
return self.x + len(self.string)
def __eq__(self, other):
return (self.y == other.y and self.x == other.x
and self.name == other.name and self.parent is other.parent and
self.string == other.string)
def __repr__(self):
if len(self.string) < 10:
s = self.string
else:
s = self.string[:10] + '...'
fields = (self.fqname(), self.rule, self.y, self.x, s)
return "<Token(%r, %r, %d, %d, %r)>" % fields
class Rule:
reflags = 0
def __init__(self, name):
assert regex.valid_token_name.match(name), 'invalid name %r' % name
assert not regex.reserved_token_names.match(name), \
"rule name %r is reserved and thus illegal" % name
self.name = name
def match(self, lexer, parent):
raise Exception, "not implemented"
def lex(self, lexer, parent, match):
raise Exception, "not implemented"
def make_token(self, lexer, s, name, parent=None, matchd={}, link=None):
t = Token(name, self, lexer.y, lexer.x, s, None, parent, matchd, link)
t.color = lexer.get_color(t)
lexer.x += len(s)
if lexer.x > len(lexer.lines[lexer.y]):
lexer.x = 0
lexer.y += 1
return t
def get_line(self, lexer, y=None):
if y is None:
return lexer.lines[lexer.y] + '\n'
else:
return lexer.lines[y] + '\n'
class PatternRule(Rule):
def __init__(self, name, pattern):
Rule.__init__(self, name)
self.pattern = pattern
self.re = re.compile(self.pattern, self.reflags)
def match(self, lexer, parent):
return self.re.match(self.get_line(lexer), lexer.x)
def lex(self, lexer, parent, m):
if m:
yield self.make_token(lexer, m.group(0), self.name, parent, m.groupdict())
raise StopIteration
class NocasePatternRule(PatternRule):
reflags = re.IGNORECASE
class OverrideError(Exception):
pass
class OverridePatternRule(PatternRule):
def lex(self, lexer, parent, m):
if m:
d = m.groupdict()
if lexer.action == 'lex':
a = lexer.mode.window.application
try:
names = d['mode'].split('.')
modecls = a.globals()[names.pop(0)]
for name in names:
modecls = getattr(modecls, name)
mode = modecls(None)
if hasattr(mode, 'grammar') and hasattr(mode, 'colors'):
lexer.mode.gstack['%s.start' % d['token']] = mode
else:
raise OverrideError, "argh: %r" % mode
except (KeyError, AttributeError, OverrideError):
pass
yield self.make_token(lexer, m.group(0), self.name, parent, d)
raise StopIteration
class ContextPatternRule(PatternRule):
def __init__(self, name, pattern, fallback):
Rule.__init__(self, name)
self.pattern = pattern
self.fallback_re = re.compile(fallback, self.reflags)
def match(self, lexer, parent):
try:
r = re.compile(self.pattern % parent.matchd)
except KeyError:
r = self.fallback_re
return r.match(self.get_line(lexer), lexer.x)
class NocaseContextPatternRule(ContextPatternRule):
reflags = re.IGNORECASE
class PatternGroupRule(PatternRule):
def __init__(self, name, *args):
assert args and len(args) % 2 == 0
i = 0
pairs = []
while i < len(args):
tokname, pattern = args[i], args[i+1]
pairs.append((tokname, re.compile(pattern, self.reflags)))
i += 2
Rule.__init__(self, name)
self.pairs = tuple(pairs)
def match(self, lexer, parent):
(x, y) = (lexer.x, lexer.y)
matches = []
for (tokname, tokre) in self.pairs:
if y >= len(lexer.lines):
return []
line = self.get_line(lexer, y)
m = tokre.match(line, x)
if m:
x += len(m.group(0))
if x >= len(line):
x = 0
y += 1
matches.append((tokname, m))
else:
return []
assert len(matches) == len(self.pairs)
return matches
def lex(self, lexer, parent, matches):
if matches:
for (tokname, m) in matches:
yield self.make_token(lexer, m.group(0), tokname, parent, m.groupdict())
raise StopIteration
class RegionRule(Rule):
def __init__(self, name, *args):
Rule.__init__(self, name)
assert len(args) > 1
args = list(args)
self.pairs = []
self.start_re = re.compile(args.pop(0), self.reflags)
while len(args) > 1:
grammar = args.pop(0)
pattern = args.pop(0)
assert hasattr(grammar, 'rules'), repr(grammar)
assert type(pattern) == type(''), repr(pattern)
self.pairs.append((grammar, pattern))
if len(args) == 1:
self.pairs.append((grammar, None))
def match(self, lexer, parent):
return self.start_re.match(self.get_line(lexer), lexer.x)
def lex(self, lexer, parent, m):
assert m
# ok, so since we had a match, we need to create our start token, who
# will be the ancestor to all other tokens matched in this region
matchd = m.groupdict()
parent = self.make_token(lexer, m.group(0), 'start', parent, matchd, 'start')
yield parent
# now we will loop over the different pairs of grammars/stop-patterns in
# this region, and return the resulting token; we start at 0
for tok in self._lex_loop(lexer, [parent], matchd, 0):
yield tok
raise StopIteration
def resume(self, lexer, toresume):
assert toresume, "can't resume without tokens to resume!"
# ok, so we need to figure out in which of the grammars of our region
# we are resuming. to do this we calculate i, a position in our list
# of grammar/stop-pattern pairs
if toresume[0].link == 'start':
i = 0
else:
m = regex.middle_token_name.match(toresume[0].link)
assert m
i = int(m.group(1)) + 1
assert i > 0 and i < len(self.pairs)
# now we will loop over the different pairs of grammars/stop-patterns in
# this region, and return the resulting token; we start at i
for tok in self._lex_loop(lexer, toresume, toresume[0].matchd, i):
yield tok
raise StopIteration
def _lex_loop(self, lexer, toresume, matchd, i):
# we need to loop over our grammar/stop-pattern pairs
while i < len(self.pairs):
# for each one, we will compile our stop-regex, and figure out the
# name of the stop token to be created if this stop-regex matches.
fqname = toresume[0].fqname()
p = Point(toresume[0].x, toresume[0].y)
if fqname in lexer.mode.ghist and p in lexer.mode.ghist[fqname]:
mode = lexer.mode.ghist[fqname][p]
grammar = mode.grammar
elif fqname in lexer.mode.gstack:
mode = lexer.mode.gstack[fqname]
grammar = mode.grammar
lexer.mode.ghist.setdefault(fqname, {})
lexer.mode.ghist[fqname][p] = mode
del lexer.mode.gstack[fqname]
else:
mode = lexer.mode
grammar = self.pairs[i][0]
lexer.mstack.append(mode)
if self.pairs[i][1]:
stopre = re.compile(self.pairs[i][1] % matchd, self.reflags)
else:
stopre = None
if i == len(self.pairs) - 1:
tokname = 'end'
else:
tokname = 'middle%d' % i
# ok, so now loop over all the tokens in the current grammar, until
# the stop-token (if any) is found, and return each result as we get
# it.
tok = None
for tok in self._lex(lexer, toresume, tokname, stopre, grammar):
yield tok
# ok, so now either we found the stop-token, and have a new parent
# for future tokens (if any), or we are done.
if tok is not None and tok.name == tokname:
toresume = [tok]
matchd.update(tok.matchd)
else:
raise StopIteration
# this should have already gotten done by _lex
#lexer.mstack.pop(-1)
i += 1
# assuming we make it through all our grammars, and find the end-token,
# then we need to signal that we are done.
raise StopIteration
def _lex(self, lexer, toresume, stopname, stopre, grammar):
assert toresume
parent = toresume[0]
reenter = len(toresume) > 1
null_t = None
# ok, so there are only two way we want to exit this loop: either we
# lex the whole document, or we encounter the stop-token.
done = False
while not done and lexer.y < len(lexer.lines):
line = self.get_line(lexer)
old_y = lexer.y
while not done and lexer.y == old_y and lexer.x < len(line):
# ok, so reenter gets priority, since the current input might be
# intended for nested grammar. so handle it here
if reenter:
reenter = False
for t in toresume[1].rule.resume(lexer, toresume[1:]):
yield t
# since we might have changed our x/y coordinates, we need to
# do some checks here, and maybe finish or change our coordintes
if lexer.y >= len(lexer.lines):
raise StopIteration
elif lexer.x >= len(line):
lexer.y += 1
lexer.x = 0
# ok, so get the *now* current line
line = self.get_line(lexer)
if stopre:
# if we are looking for a stop-token, do that check now
m = stopre.match(line, lexer.x)
if m:
if null_t:
# if we have a null token waiting, return it first.
yield null_t
null_t = None
# ok, now return the stop-token, and signal that we are
# done and no more input is to be consumed
lexer.mstack.pop(-1)
yield self.make_token(lexer, m.group(0), stopname,
parent, m.groupdict(), stopname)
done = True
break
m = None
# start checking our rules to see if we can match the input
for rule in grammar.rules:
m = rule.match(lexer, parent)
if m:
# ok great, we have a match
if null_t:
# if we have a null token waiting, return it first.
yield null_t
null_t = None
# ok, now for every token this rules has created, we
# return them, one by one.
for t in rule.lex(lexer, parent, m):
yield t
break
if not m:
# we didn't find a match on a rule, so add this character to
# the current null token (creating a new one if necessary);
if not null_t:
null_t = Token('null', None, lexer.y, lexer.x, '', None, parent)
null_t.color = lexer.get_color(null_t)
null_t.add_to_string(line[lexer.x])
lexer.x += 1
# ok, we are at the end of a line of input. so, if we have a null
# token waiting, now is the time to return it
if null_t:
yield null_t
null_t = None
if not done and old_y == lexer.y:
lexer.y += 1
lexer.x = 0
raise StopIteration
class NocaseRegionRule(RegionRule):
reflags = re.IGNORECASE
class Grammar:
rules = []
grammar = Grammar()
class Lexer:
def __init__(self, mode, grammar):
self.mode = mode
self.mstack = []
self.grammar = grammar
self.y = 0
self.x = 0
self.lines = None
assert self.grammar.rules
def get_line(self):
return self.lines[self.y] + '\n'
def lex(self, lines, y=0, x=0):
self.action = 'lex'
self.y = y
self.x = x
self.lines = lines
self.mstack = []
self.mode.ghist = {}
self.mode.gstack = {}
for t in self._lex():
yield t
del self.action
raise StopIteration
def resume(self, lines, y, x, token):
self.action = 'resume'
self.y = y
self.x = x
self.lines = lines
self.mstack = []
toresume = token.parents()
i = 1
while i < len(toresume):
if toresume[i].link and toresume[i].link != 'start':
del toresume[i-1]
else:
i += 1
if toresume:
for t in toresume[0].rule.resume(self, toresume):
yield t
for t in self._lex():
yield t
del self.action
raise StopIteration
def _lex(self):
parent = None
while self.y < len(self.lines):
null_t = None
line = self.get_line()
while self.x < len(line):
m = None
for rule in self.grammar.rules:
m = rule.match(self, parent)
if m:
if null_t:
yield null_t
null_t = None
for t in rule.lex(self, parent, m):
yield t
break
if self.y >= len(self.lines):
break
line = self.get_line()
if not m:
if self.x < len(line):
if null_t is None:
null_t = Token('null', None, self.y, self.x, '', None, parent)
null_t.color = self.get_color(null_t)
null_t.add_to_string(line[self.x])
self.x += 1
if null_t:
yield null_t
self.y += 1
self.x = 0
raise StopIteration
def get_color(self, token):
fqlist = token.fqlist()
if self.mstack:
mode = self.mstack[-1]
else:
mode = self.mode
v = list(mode.default_color)
for j in range(0, len(fqlist)):
name = '.'.join(fqlist[j:])
if name in mode.colors:
assert type(mode.colors[name]) == type(()), repr(mode)
v = list(mode.colors[name])
break
#if DARK_BACKGROUND:
if True:
v.append('bold')
return v

280
mode2.py
View File

@ -1,280 +0,0 @@
import os, sets, string
import color, method
from lex import Lexer
from point import Point
DEBUG = False
class ActionError(Exception):
pass
class Handler(object):
def __init__(self):
self.prefixes = sets.Set(["C-x", "C-c", "C-u"])
self.last_sequence = ''
self.curr_tokens = []
self.bindings = {}
# handle adding and removing actions
def add_action(self, action):
if self.window is None:
return
elif action.name in self.window.application.methods:
return
else:
self.window.application.methods[action.name] = action
def del_action(self, name):
if self.window is None:
return
for binding in self.bindings.keys():
if self.bindings[binding] == name:
del self.bindings[binding]
def add_binding(self, name, sequence):
if self.window is None:
return
elif not hasattr(self.window, 'application'):
raise Exception, "argh %r %r" % (self, self.window)
elif name not in self.window.application.methods:
raise Exception, "No action called %r found" % name
else:
self.bindings[sequence] = name
def add_bindings(self, name, sequences):
if self.window is None:
return
for sequence in sequences:
self.add_binding(name, sequence)
def del_binding(self, sequence):
if self.window is None:
return
del self.bindings[sequence]
def add_action_and_bindings(self, action, sequences):
if self.window is None:
return
self.add_action(action)
for sequence in sequences:
self.add_binding(action.name, sequence)
def handle_token(self, t):
'''self.handle_token(token): returns None, or the action to
take. raises an exception on unknown input'''
self.curr_tokens.append(t)
sequence = " ".join(self.curr_tokens)
if sequence in self.bindings:
act = self.window.application.methods[self.bindings[sequence]]
self.last_sequence = sequence
self.curr_tokens = []
return act
elif t in self.prefixes:
for binding in self.bindings:
if binding.startswith(sequence):
return None
self.curr_tokens = []
self.last_sequence = sequence
raise ActionError, "no action defined for %r" % (sequence)
class Fundamental(Handler):
'''This is the default mode'''
modename = "Fundamental"
paths = []
basenames = []
extensions = []
detection = []
savetabs = False
tabwidth = 4
tabbercls = None
grammar = None
lexer = None
tabber = None
default_color = ('default', 'default',)
colors = {}
def install(cls, app):
app.setmode(cls.modename.lower(), cls, paths=cls.paths,
basenames=cls.basenames, extensions=cls.extensions,
detection=cls.detection)
install = classmethod(install)
def __init__(self, w):
self.window = w
# we need to defer this due to curses startup
#self.default_color = color.pairs('default', 'default')
Handler.__init__(self)
# first let's add all the "default" actions
self.add_bindings('start-of-line', ('C-a', 'HOME',))
self.add_bindings('end-of-line', ('C-e', 'END',))
self.add_bindings('backward', ('C-b', 'L_ARROW',))
self.add_bindings('forward', ('C-f', 'R_ARROW',))
self.add_bindings('center-view', ('C-l',))
self.add_bindings('next-line', ('C-n', 'D_ARROW',))
self.add_bindings('previous-line', ('C-p', 'U_ARROW',))
self.add_bindings('next-section', ('M-n', 'M-D_ARROW',))
self.add_bindings('previous-section', ('M-p', 'M-U_ARROW',))
self.add_bindings('page-down', ('C-v', 'PG_DN',))
self.add_bindings('page-up', ('M-v', 'PG_UP',))
self.add_bindings('goto-beginning', ('M-<',))
self.add_bindings('goto-end', ('M->',))
self.add_bindings('delete-left', ('DELETE', 'BACKSPACE',))
self.add_bindings('delete-left-word', ('M-DELETE', 'M-BACKSPACE',))
self.add_bindings('delete-right', ('C-d',))
self.add_bindings('delete-right-word', ('M-d',))
self.add_bindings('kill-region', ('C-w',))
self.add_bindings('copy-region', ('M-w',))
self.add_bindings('kill', ('C-k',))
self.add_bindings('copy', ('M-k',))
self.add_bindings('yank', ('C-y',))
self.add_bindings('pop-kill', ('M-y',))
self.add_bindings('right-word', ('M-f',))
self.add_bindings('left-word', ('M-b',))
self.add_bindings('set-mark', ('C-@',))
self.add_bindings('switch-buffer', ('C-x b',))
self.add_bindings('switch-mark', ('C-x C-x',))
self.add_bindings('undo', ('C-/', 'C-x u',))
self.add_bindings('redo', ('M-/', 'M-_', 'C-x r',))
self.add_bindings('goto-line', ('M-g',))
self.add_bindings('forward-chars', ('C-x M-c',))
self.add_bindings('forward-lines', ('C-x M-n',))
self.add_bindings('search', ('C-s',))
self.add_bindings('reverse-search', ('C-r',))
self.add_bindings('regex-search', ('M-C-s',))
self.add_bindings('regex-reverse-search', ('M-C-r',))
self.add_bindings('toggle-margins', ('M-m',))
self.add_bindings('replace', ('M-%',))
self.add_bindings('regex-replace', ('M-$',))
self.add_bindings('open-file', ('C-x C-f',))
self.add_bindings('kill-buffer', ('C-x k',))
self.add_bindings('list-buffers', ('C-x C-b',))
self.add_bindings('meta-x', ('M-x',))
self.add_bindings('wrap-line', ('M-q',))
self.add_bindings('transpose-words', ('M-t',))
self.add_bindings('save-buffer', ('C-x C-s',))
self.add_bindings('save-buffer-as', ('C-x C-w',))
self.add_bindings('relex-buffer', ('M-r',))
self.add_bindings('exit', ('C-x C-c',))
self.add_bindings('split-window', ('C-x s', 'C-x 2',))
self.add_bindings('unsplit-window', ('C-u s', 'C-x 1',))
self.add_bindings('toggle-window', ('C-x o',))
self.add_bindings('delete-left-whitespace', ('C-c DELETE', 'C-c BACKSPACE',))
self.add_bindings('delete-right-whitespace', ('C-c d',))
self.add_bindings('insert-space', ('SPACE',))
self.add_bindings('insert-tab', ('TAB',))
self.add_bindings('insert-newline', ('RETURN',))
self.add_bindings('comment-region', ('C-c #',))
self.add_bindings('uncomment-region', ('C-u C-c #',))
self.add_bindings('justify-right', ('C-c f',))
self.add_bindings('justify-left', ('C-c b',))
self.add_bindings('indent-block', ('C-c >',))
self.add_bindings('unindent-block', ('C-c <',))
self.add_bindings('token-complete', ('M-c', 'C-c c'))
self.add_bindings('shell-cmd', ('C-c !',))
self.add_bindings('open-aes-file', ('C-c a',))
self.add_bindings('open-console', ('M-e',))
self.add_bindings('show-bindings-buffer', ('C-c M-h','C-c M-?',))
self.add_bindings('which-command', ('M-?',))
self.add_bindings('cmd-help-buffer', ('M-h',))
self.add_bindings('set-mode', ('C-x m',))
self.add_bindings('cancel', ('C-]',))
self.add_bindings('exec', ('C-c e',))
self.add_bindings('grep', ('C-c g',))
self.add_bindings('pipe', ('C-c p',))
self.add_bindings('view-buffer-parent', ('C-c .',))
# unbound actions
self.add_action(method.GetToken())
# create all the insert actions for the basic text input
for c in string.letters + string.digits + string.punctuation:
self.add_binding('insert-string-%s' % c, c)
# lexing for highlighting, etc.
if self.grammar:
self.lexer = Lexer(self, self.grammar)
self.gstack = {}
self.ghist = {}
# tab handling
if self.tabbercls:
self.tabber = self.tabbercls(self)
# get mode name
def name(self):
return self.modename
# handle input tokens
def handle_token(self, t):
'''self.handle_token(token): handles input "token"'''
self.window.active_point = None
#self.window.application.clear_error()
self.window.clear_error()
try:
act = Handler.handle_token(self, t)
if act is None:
self.window.set_error(' '.join(self.curr_tokens))
return
else:
act.execute(self.window)
self.window.application.last_action = act.name
except ActionError, e:
if t != 'C-]':
self.window.set_error(str(e))
else:
self.window.set_error('Cancelled')
except Exception, e:
if DEBUG:
raise
else:
err = "%s in mode '%s'" % (e, self.name())
self.window.set_error(err)
def region_added(self, p, newlines):
if self.tabber is not None:
self.tabber.region_added(p, newlines)
if self.lexer:
ydelta = len(newlines) - 1
xdelta = len(newlines[-1])
ghist = {}
for name in self.ghist:
for gp in self.ghist[name]:
if gp < p:
newp = gp
elif ydelta == 0:
if p.y == gp.y:
newp = Point(gp.x + xdelta, gp.y)
else:
newp = gp
else:
if gp.y == p.y:
newp = Point(gp.x + xdelta, gp.y + ydelta)
else:
newp = Point(gp.x, gp.y + ydelta)
ghist.setdefault(name, {})
ghist[name][newp] = self.ghist[name][gp]
self.ghist = ghist
def region_removed(self, p1, p2):
if self.tabber is not None:
self.tabber.region_removed(p1, p2)
if self.lexer:
ydelta = p2.y - p1.y
xdelta = p2.x - p1.x
ghist = {}
for name in self.ghist:
for gp in self.ghist[name]:
if gp < p1:
newp = gp
elif p1 <= gp and gp < p2:
continue
elif ydelta == 0:
if gp.y == p2.y:
newp = Point(gp.x - xdelta, gp.y)
else:
newp = gp
else:
if gp.y == p2.y:
newp = Point(gp.x - xdelta, gp.y - ydelta)
else:
newp = Point(gp.x, gp.y - ydelta)
ghist.setdefault(name, {})
ghist[name][newp] = self.ghist[name][gp]
self.ghist = ghist
install = Fundamental.install

209
tab2.py
View File

@ -1,209 +0,0 @@
import regex, util
from point import Point
class Marker:
def __init__(self, name, level):
self.name = name
self.level = level
def __repr__(self):
return '<Marker(%r, %r)>' % (self.name, self.level)
class Tabber:
wsre = regex.whitespace
wst = ('null', 'eol',)
sre = regex.space
st = ('null',)
def __init__(self, m):
self.mode = m
self.lines = {}
def get_highlighter(self):
return self.mode.window.buffer.highlights[self.mode.name()]
def get_tokens(self, y):
return self.mode.window.buffer.highlights[self.mode.name()].tokens[y]
def get_token(self, y, i):
return self.mode.window.buffer.highlights[self.mode.name()].tokens[y][i]
def token_is_whitespace(self, y, i):
token = self.get_token(y, i)
return token.fqname() in self.wst and self.wsre.match(token.string)
def token_is_space(self, y, i):
token = self.get_token(y, i)
return token.fqname() in self.st and self.sre.match(token.string)
def get_next_left_token(self, y, i):
tokens = self.get_tokens(y)
assert i >= 0 and i < len(tokens)
for j in range(1, i):
if not self.token_is_whitespace(y, i - j):
return tokens[i - j]
return None
def get_next_right_token(self, y, i):
tokens = self.get_tokens(y)
assert i >= 0 and i < len(tokens)
for j in range(i + 1, len(tokens)):
if not self.token_is_whitespace(y, j):
return tokens[j]
return None
def is_leftmost_token(self, y, i):
return self.get_next_left_token(y, i) is None
def is_rightmost_token(self, y, i):
return self.get_next_right_token(y, i) is None
def is_only_token(self, y, i):
return self.is_leftmost_token(y, i) and self.is_rightmost_token(y, i)
def get_leftmost_token(self, y):
tokens = self.get_tokens(y)
for i in range(0, len(tokens)):
if not self.token_is_whitespace(y, i):
return tokens[i]
return None
def get_rightmost_token(self, y):
tokens = self.get_tokens(y)
i = len(tokens) - 1
for j in range(0, len(tokens)):
if not self.token_is_whitespace(y, i - j):
return tokens[i - j]
return None
def get_nonws_tokens(self, y):
tokens = self.get_tokens(y)
for i in range(0, len(tokens)):
if not self.token_is_whitespace(y, i):
yield tokens[i]
raise StopIteration
def get_nons_tokens(self, y):
tokens = self.get_tokens(y)
for i in range(0, len(tokens)):
if not self.token_is_space(y, i):
yield tokens[i]
raise StopIteration
def region_added(self, p, newlines):
self.lines = {}
def region_removed(self, p1, p2):
self.lines = {}
def is_base(self, y):
return True
def get_level(self, y):
if y in self.lines:
return self.lines[y]
else:
self._calc_level(y)
return self.lines.get(y)
def _calc_level(self, y):
pass
class StackTabber(Tabber):
def __init__(self, m):
self.mode = m
self.lines = {}
self.record = {}
self.markers = []
def get_curr_level(self):
if self.markers:
return self.markers[-1].level
else:
return 0
def region_added(self, p, newlines):
self.lines = {}
self.record = {}
self.markers = []
def region_removed(self, p1, p2):
self.lines = {}
self.record = {}
self.markers = []
def is_base(self, y):
return y == 0
def _calc_level(self, y):
# first we need to step back to find the last place where we have tab
# stops figured out, or a suitable place to start
target = y
while not self.is_base(y) and y > 0:
y -= 1
# ok now, let's do this shit
self.markers = []
currlvl = 0
while y <= target:
currlvl = self.get_curr_level()
tokens = self.get_tokens(y)
for i in range(0, len(tokens)):
currlvl = self._handle_token(currlvl, y, i)
self.lines[y] = currlvl
self.record[y] = tuple(self.markers)
y += 1
def _handle_token(self, currlvl, y, i):
token = self.get_token(y, i)
s = token.string
fqname = token.fqname()
if fqname in self.mode.closetokens and s in self.mode.closetags:
currlvl = self._handle_close_token(currlvl, y, i)
elif fqname in self.mode.opentokens and s in self.mode.opentags:
currlvl = self._handle_open_token(currlvl, y, i)
else:
currlvl = self._handle_other_token(currlvl, y, i)
return currlvl
def _handle_open_token(self, currlvl, y, i):
token = self.get_token(y, i)
rtoken = self.get_next_right_token(y, i)
if rtoken is None:
#level = self.get_curr_level() + 4
level = self.get_curr_level() + self.mode.tabwidth
else:
level = rtoken.x
self._append(token.string, level)
return currlvl
def _handle_close_token(self, currlvl, y, i):
token = self.get_token(y, i)
s1 = token.string
if not self.markers:
raise Exception, "unmatched closing token %r" % s1
s2 = self.markers[-1].name
if self.mode.closetags[s1] == s2:
self._pop()
if self.is_leftmost_token(y, i):
currlvl = self.get_curr_level()
else:
raise Exception, "mismatched closing tag %r vs %r" % (s2, s1)
return currlvl
def _handle_other_token(self, currlvl, y, i):
return currlvl
def _has_markers(self):
return len(self.markers) > 0
def _empty(self):
return len(self.markers) == 0
def _append(self, name, level):
self.markers.append(Marker(name, level))
def _peek(self):
return self.markers[-1]
def _peek_name(self):
return self.markers[-1].name
def _peek_level(self):
return self.markers[-1].level
def _pop(self):
self.markers.pop(-1)
def _pop_until(self, *names):
while self.markers:
if self.markers[-1].name in names:
self.markers.pop(-1)
return
else:
self.markers.pop(-1)
def _opt_append(self, name, level):
if self.markers and self.markers[-1].name == name:
pass
else:
self._append(name, level)
def _opt_pop(self, *names):
if self.markers and self.markers[-1].name in names:
self.markers.pop(-1)

View File

@ -1,635 +0,0 @@
import os.path, string
import highlight, regex
from point import Point
WORD_LETTERS = list(string.letters + string.digits)
# note about the cursor: the cursor position will insert in front of the
# character it highlights. to this end, it needs to be able to highlight behind
# the last character on a line. thus, the x coordinate of the (logical) cursor
# can equal the length of lines[y], even though lines[y][x] throws an index
# error. both buffer and window need to be aware of this possibility for points.
class Window(object):
margins = ((80, 'blue'),)
margins_visible = False
def __init__(self, b, a, height=24, width=80, mode_name=None):
self.buffer = b
self.application = a
self.first = Point(0, 0)
self.last = None
self.cursor = Point(0, 0)
self.mark = None
self.active_point = None
self.height = height
self.width = width
self.input_line = ""
if mode_name is not None:
pass
elif hasattr(self.buffer, 'modename') and self.buffer.modename is not None:
mode_name = self.buffer.modename
elif self.buffer.btype == 'mini':
mode_name = 'mini'
elif self.buffer.btype == 'console':
mode_name = "fundamental"
elif self.buffer.btype == 'dir':
mode_name = 'dir'
elif hasattr(self.buffer, 'path'):
path = self.buffer.path
basename = os.path.basename(path)
ext = self._get_path_ext(path)
if path in self.application.mode_paths:
mode_name = self.application.mode_paths[path]
elif basename in self.application.mode_basenames:
mode_name = self.application.mode_basenames[basename]
elif ext in self.application.mode_extensions:
mode_name = self.application.mode_extensions[ext]
elif len(self.buffer.lines) > 0 and \
self.buffer.lines[0].startswith('#!'):
line = self.buffer.lines[0]
for word in self.application.mode_detection:
if word in line:
mode_name = self.application.mode_detection[word]
if mode_name is None:
mode_name = "fundamental"
m = self.application.modes[mode_name](self)
self.set_mode(m)
self.buffer.add_window(self)
# private method used in window constructor
def _get_path_ext(self, path):
name = os.path.basename(path).lower()
tokens = name.split('.')
if len(tokens) > 2 and tokens[-1] in ('gz', 'in', 'zip'):
return '.%s.%s' % (tokens[-2], tokens[-1])
else:
return os.path.splitext(path)[1].lower()
# some useful pass-through to application
def set_error(self, s):
self.application.set_error(s)
def clear_error(self):
self.application.clear_error()
# mode stuff
def set_mode(self, m):
self.mode = m
modename = m.name()
if modename not in self.buffer.highlights and m.lexer is not None:
self.buffer.highlights[modename] = highlight.Highlighter(m.lexer)
self.buffer.highlights[modename].highlight(self.buffer.lines)
#self.redraw()
def get_highlighter(self):
if self.mode.lexer is None:
return None
else:
return self.buffer.highlights[self.mode.name()]
# this is used to temporarily draw the user's attention to another point
def set_active_point(self, p, msg='marking on line %(y)d, character %(x)d'):
self.active_point = p
if not self.point_is_visible(p):
self.application.set_error(msg % {'x': p.x, 'y': p.y})
# point left
def point_left(self, p):
if p.y == 0 and p.x == 0:
return None
elif p.x == 0:
return Point(len(self.buffer.lines[p.y - 1]), p.y - 1)
else:
return Point(p.x - 1, p.y)
# point right
def point_right(self, p):
if p.y == len(self.buffer.lines)-1 and p.x == len(self.buffer.lines[-1]):
return None
elif p.x == len(self.buffer.lines[p.y]):
return Point(0, p.y + 1)
else:
return Point(p.x + 1, p.y)
# cursors
def logical_cursor(self):
if len(self.buffer.lines) > self.cursor.y:
l = len(self.buffer.lines[self.cursor.y])
else:
l = 0
x = min(self.cursor.x, l)
return Point(x, self.cursor.y)
# last visible point
def _calc_last(self):
(x, y) = self.first.xy()
count = 0
while count < self.height - 1 and y < len(self.buffer.lines) - 1:
line = self.buffer.lines[y]
if x >= len(line) or len(line[x:]) <= self.width:
x = 0
y += 1
count += 1
else:
count += 1
x += self.width
if y < len(self.buffer.lines):
x = min(x + self.width, len(self.buffer.lines[y]))
self.last = Point(x, y)
# redrawing
def redraw(self):
self._calc_last()
def set_size(self, width, height):
assert type(width) == type(0), width
assert type(height) == type(0), height
self.width = width
self.height = height
self.redraw()
# region added
def region_added(self, p, newlines):
(x, y) = self.logical_cursor().xy()
l = len(newlines)
assert l > 0, repr(newlines)
visible = self.point_is_visible(p)
if l > 1:
if y > p.y:
self.cursor = Point(x, y + l - 1)
elif y == p.y and x >= p.x:
self.cursor = Point(len(newlines[-1]) + x - p.x, y + l - 1)
elif y == p.y and x >= p.x:
self.cursor = Point(x + len(newlines[0]), y)
if not visible and l > 1 and self.first.y > p.y:
self.first = Point(self.first.x, self.first.y + l - 1)
self.redraw()
self.mode.region_added(p, newlines)
self.assure_visible_cursor()
# region removed
def region_removed(self, p1, p2):
cursor = self.logical_cursor()
(x, y) = cursor.xy()
visible = self.point_is_visible(p2)
xdelta = p2.x - p1.x
ydelta = p2.y - p1.y
if cursor < p1:
pass
elif cursor < p2:
self.cursor = p1
elif cursor.y == p2.y:
#self.cursor = Point(self.cursor.x - p2.x + p1.x, p1.y)
self.cursor = Point(self.cursor.x - xdelta, p1.y)
else:
#self.cursor = Point(self.cursor.x, self.cursor.y - p2.y + p1.y)
self.cursor = Point(self.cursor.x, self.cursor.y - ydelta)
if not visible and ydelta and self.first.y > p2.y:
self.first = Point(self.first.x, self.first.y - ydelta)
self.redraw()
self.mode.region_removed(p1, p2)
self.assure_visible_cursor()
def point_is_visible(self, p):
return self.first <= p and p <= self.last
def cursor_is_visible(self):
return self.point_is_visible(self.logical_cursor())
def first_is_visible(self):
return self.point_is_visible(self.buffer.get_buffer_start())
def last_is_visible(self):
return self.point_is_visible(self.buffer.get_buffer_end())
def center_view(self):
(x, y) = self.logical_cursor().xy()
counter = 0
while counter < self.height / 2:
if x > self.width:
x -= self.width
elif y > 0:
y -= 1
x = len(self.buffer.lines[y])
else:
(x, y) = (0, 0)
break
counter += 1
self.first = Point(x - (x % self.width), y)
self.redraw()
def assure_visible_cursor(self):
if not self.cursor_is_visible():
#raise Exception, "%s < %s" % (self.last, self.logical_cursor())
self.center_view()
# moving in buffer
def forward(self):
cursor = self.logical_cursor()
if cursor.x < len(self.buffer.lines[cursor.y]):
self.cursor = Point(cursor.x + 1, cursor.y)
elif cursor.y < len(self.buffer.lines) -1:
self.cursor = Point(0, cursor.y + 1)
self.assure_visible_cursor()
def backward(self):
cursor = self.logical_cursor()
if cursor.x > 0:
self.cursor = Point(cursor.x - 1, cursor.y)
elif cursor.y > 0:
self.cursor = Point(len(self.buffer.lines[cursor.y - 1]), cursor.y - 1)
self.assure_visible_cursor()
def end_of_line(self):
cursor = self.logical_cursor()
self.cursor = Point(len(self.buffer.lines[cursor.y]), cursor.y)
self.assure_visible_cursor()
def start_of_line(self):
cursor = self.logical_cursor()
self.cursor = Point(0, cursor.y)
self.assure_visible_cursor()
def previous_line(self):
if self.cursor.y > 0:
self.cursor = Point(self.cursor.x, self.cursor.y - 1)
self.assure_visible_cursor()
def next_line(self):
if self.cursor.y < len(self.buffer.lines) - 1:
self.cursor = Point(self.cursor.x, self.cursor.y + 1)
self.assure_visible_cursor()
# word handling
def find_left_word(self, p=None):
if p is None:
(x, y) = self.logical_cursor().xy()
else:
(x, y) = p.xy()
start = self.buffer.get_buffer_start()
if (x, y) == start:
return
elif x == 0:
y -= 1
x = len(self.buffer.lines[y])
else:
x -= 1
while (y, x) >= start and self.xy_char(x, y) not in WORD_LETTERS:
if x == 0:
y -= 1
x = len(self.buffer.lines[y])
else:
x -= 1
found_word = False
while (y, x) >= start and self.xy_char(x, y) in WORD_LETTERS:
found_word = True
if x == 0:
y -= 1
x = len(self.buffer.lines[y])
else:
x -= 1
if not found_word:
return None
elif x == len(self.buffer.lines[y]):
x = 0
y += 1
else:
x += 1
return Point(x, y)
def find_right_word(self, p=None):
if p is None:
(x, y) = self.logical_cursor().xy()
else:
(x, y) = p.xy()
end = self.buffer.get_buffer_end()
while (y, x) < end and self.xy_char(x, y) not in WORD_LETTERS:
if x == len(self.buffer.lines[y]):
x = 0
y += 1
else:
x += 1
while (y, x) < end and self.xy_char(x, y) in WORD_LETTERS:
if x == len(self.buffer.lines[y]):
x = 0
y += 1
else:
x += 1
return Point(x, y)
def left_word(self):
p = self.find_left_word()
if p is not None:
self.goto(p)
def right_word(self):
p = self.find_right_word()
if p is not None:
self.goto(p)
def get_word_bounds_at_point(self, p, wl=WORD_LETTERS):
if len(self.buffer.lines[p.y]) == 0:
return None
elif self.cursor_char() not in wl:
return None
x1 = x2 = p.x
while x1 > 0 and self.xy_char(x1 - 1, p.y) in wl:
x1 -= 1
while x2 < len(self.buffer.lines[p.y]) and self.xy_char(x2, p.y) in wl:
x2 += 1
return (Point(x1, p.y), Point(x2, p.y))
def get_word_at_point(self, p, wl=WORD_LETTERS):
bounds = self.get_word_bounds_at_point(p, wl)
if bounds is None:
return None
else:
return self.buffer.get_substring(bounds[0], bounds[1])
def get_word_bounds(self, wl=WORD_LETTERS):
return self.get_word_bounds_at_point(self.logical_cursor(), wl)
def get_word(self, wl=WORD_LETTERS):
return self.get_word_at_point(self.logical_cursor(), wl)
# page up/down
def _pshift_up(self, p, num):
(x, y) = p.xy()
orig_x = x
counter = 0
while counter < num and y > 0:
if x > self.width:
x -= self.width
else:
y -= 1
x = len(self.buffer.lines[y])
counter += 1
return Point(orig_x, y)
def _pshift_down(self, p, num):
(x, y) = p.xy()
orig_x = x
counter = 0
while counter < num and y < len(self.buffer.lines):
if x + self.width >= len(self.buffer.lines[y]):
y += 1
x = 0
else:
x += self.width
counter += 1
if y == len(self.buffer.lines):
y -= 1
x = len(self.buffer.lines[y])
return Point(orig_x, y)
def page_up(self):
first_point = self.buffer.get_buffer_start()
if self.point_is_visible(first_point):
self.goto_beginning()
return
self.cursor = self._pshift_up(self.cursor, self.height - 3)
if self.first > first_point:
self.first = self._pshift_up(self.first, self.height - 3)
self.redraw()
def page_down(self):
last_point = self.buffer.get_buffer_end()
if self.point_is_visible(last_point):
self.goto_end()
return
self.cursor = self._pshift_down(self.cursor, self.height - 3)
if self.last < last_point:
self.first = self._pshift_down(self.first, self.height - 3)
self.redraw()
# jumping in buffer
def goto(self, p):
self.cursor = p
self.assure_visible_cursor()
def goto_line(self, n):
assert n > 0 and n <= len(self.buffer.lines) , "illegal line: %d" % n
self.cursor = Point(0, n - 1)
self.assure_visible_cursor()
def forward_lines(self, n):
assert n > 0, "illegal number of lines: %d" % n
y = min(self.logical_cursor().y + n, len(self.buffer.lines) - 1)
self.goto(Point(0, y))
def forward_chars(self, n):
(x, y) = self.logical_cursor().xy()
for i in range(0, n):
if x == len(self.buffer.lines[y]):
y += 1
x = 0
if y >= len(self.buffer.lines):
break
else:
x += 1
self.goto(Point(x, y))
def goto_char(self, n):
self.goto_beginning()
self.forward_chars(n)
def goto_beginning(self):
self.cursor = Point(0, 0)
self.assure_visible_cursor()
def goto_end(self):
self.cursor = self.buffer.get_buffer_end()
(x, y) = self.logical_cursor().xy()
if x == 0:
y -= 1
x = len(self.buffer.lines[y])
else:
x -= 1
counter = 0
while counter < self.height - 3:
if x > self.width:
x -= self.width
elif y > 0:
y -= 1
x = len(self.buffer.lines[y])
else:
(x, y) = (0, 0)
break
counter += 1
if not self.cursor_is_visible():
self.first = Point(x - (x % self.width), y)
self.redraw()
# mark manipulation
def set_mark_point(self, p):
self.mark = p
def set_mark(self):
self.set_mark_point(self.logical_cursor())
self.application.set_error("Mark set")
def goto_mark(self):
self.goto(self.mark)
def switch_mark(self):
if self.mark:
p = self.mark
self.set_mark_point(self.logical_cursor())
self.goto(p)
# deletion
def left_delete(self):
(x, y) = self.logical_cursor().xy()
if x > 0:
self.buffer.delete_char(Point(x - 1, y))
elif y > 0:
self.buffer.delete_char(Point(len(self.buffer.lines[y - 1]), y - 1))
def right_delete(self):
cursor = self.logical_cursor()
if cursor < self.last:
self.buffer.delete_char(cursor)
else:
pass
# killing
def kill_line(self):
return self.copy_line(kill=True)
def kill_region(self):
return self.copy_region(kill=True)
def kill_left_word(self):
p1 = self.find_left_word()
p2 = self.logical_cursor()
if p1 == p2:
return
return self.kill(p1, p2)
def kill_right_word(self):
p1 = self.logical_cursor()
p2 = self.find_right_word()
if p1 == p2:
return
return self.kill(p1, p2)
def copy_line(self, kill=False):
cursor = self.logical_cursor()
(x, y) = cursor.xy()
lines = self.buffer.lines
if (x < len(lines[y]) and not regex.whitespace.match(lines[y][x:])):
limit = Point(len(lines[y]), y)
elif y < len(lines) - 1:
limit = Point(0, y + 1)
else:
return
if kill:
return self.kill(cursor, limit)
else:
return self.copy(cursor, limit)
def copy_region(self, kill=False):
cursor = self.logical_cursor()
if cursor < self.mark:
p1 = cursor
p2 = self.mark
elif self.mark < cursor:
p1 = self.mark
p2 = cursor
else:
self.input_line = "Empty kill region"
return
if kill:
return self.kill(p1, p2)
else:
return self.copy(p1, p2)
def kill(self, p1, p2):
killed = self.buffer.get_substring(p1, p2)
self.buffer.delete(p1, p2)
self.application.push_kill(killed)
return killed
def copy(self, p1, p2):
copied = self.buffer.get_substring(p1, p2)
self.application.push_kill(copied)
return copied
# overwriting
def overwrite_char_at_cursor(self, c):
self.overwrite_char(self.logical_cursor(), c)
def overwrite_char(self, p, c):
line = self.buffer.lines[p.y]
if p.x >= len(line):
self.insert_string(p, c)
elif p.x == len(line) - 1:
self.buffer.overwrite_char(p, c)
if p.y < len(self.buffer.lines):
self.cursor = Point(0, p.y + 1)
else:
self.buffer.overwrite_char(p, c)
self.cursor = Point(p.x + 1, p.y)
# insertion
def insert_string_at_cursor(self, s):
self.insert_string(self.logical_cursor(), s)
def insert_string(self, p, s):
lines = s.split('\n')
self.insert_lines(p, lines)
def insert_lines_at_cursor(self, lines):
self.insert_lines(self.logical_cursor(), lines)
def insert_lines(self, p, lines):
self.buffer.insert_lines(p, lines)
self.redraw()
# yank/pop
def yank(self):
self.insert_string_at_cursor(self.application.get_kill())
def get_kill(self):
return self.application.get_kill()
def has_kill(self, i=-1):
return self.application.has_kill(i)
def pop_kill(self):
return self.application.pop_kill()
def push_kill(self, s):
return self.application.push_kill(s)
# querying
def cursor_char(self):
return self.point_char(self.logical_cursor())
def point_char(self, p):
return self.xy_char(p.x, p.y)
def xy_char(self, x, y):
if x == len(self.buffer.lines[y]):
return "\n"
else:
return self.buffer.lines[y][x]
# undo/redo
def undo(self):
p = self.buffer.undo()
if not self.point_is_visible(p):
self.goto(p)
def redo(self):
p = self.buffer.redo()
if not self.point_is_visible(p):
self.goto(p)
# highlighting tokens
def get_token(self):
return self.get_token_at_point(self.logical_cursor())
def get_token2(self):
c = self.logical_cursor()
p = Point(max(0, c.x - 1), c.y)
return self.get_token_at_point(p)
def get_token_at_point(self, p):
for token in self.get_highlighter().tokens[p.y]:
if token.end_x() <= p.x:
continue
elif token.x > p.x:
continue
else:
return token
return None
def get_next_token_by_lambda(self, p, f):
tokens = self.get_highlighter().tokens[p.y]
for token in tokens:
if token.x < p.x:
continue
if f(token):
return token
return None
def get_next_token_by_type(self, p, name):
return self.get_next_token_by_lambda(p, lambda t: t.name == name)
def get_next_token_except_type(self, p, name):
return self.get_next_token_by_lambda(p, lambda t: t.name != name)
def get_next_token_by_type_regex(self, p, name, regex):
l = lambda t: t.name == name and regex.match(t.string)
return self.get_next_token_by_lambda(p, l)
def get_next_token_except_type_regex(self, p, name, regex):
l = lambda t: t.name != name or regex.match(t.string)
return self.get_next_token_by_lambda(p, l)
def get_next_token_by_types(self, p, *names):
return self.get_next_token_by_lambda(p, lambda t: t.name in names)
def get_next_token_except_types(self, p, *names):
return self.get_next_token_by_lambda(p, lambda t: t.name not in names)