import sys from lex import Token color_list = [] color_names = [ 'black', 'dred', 'dgreen', 'brown', 'dblue', 'dpurple', 'dcyan', 'lgrey', 'dgrey', 'lred', 'lgreen', 'yellow', 'lblue', 'lpurple', 'lcyan', 'white', 'unset', ] color_dict ={} def setup(): color_list.extend(['\033[3%dm' % x for x in range(0, 8)]) color_list.extend(['\033[3%d;1m' % x for x in range(0, 8)]) color_list.extend(['\033[0m']) for i in range(0, len(color_list)): color_dict[color_names[i]] = color_list[i] setup() #def token_match(self, token, name, data=None): # return token.fqname() == name and data is None or token.string == data #def token_match2(self, token, name, regex): # return token.fqname() == name and regex.match(token.string) #def token_vmatch(self, token, *pairs): # for (name, data) in pairs: # if token_match(token, name, data): # return True # return False #def token_vmatch2(self, token, *pairs): # for (name, regex) in pairs: # if token_match(token, name, regex): # return True # return False class Highlighter(object): def __init__(self, lexer): self.lexer = lexer self.tokens = [] def dump(self, fmt='(%3s, %2s) | %s'): print fmt % ('y', 'x', 'string') for i in range(0, len(self.tokens)): group = self.tokens[i] print 'LINE %d' % i for token in group: print fmt % (token.y, token.x, token.string) def display(self, token_colors={}, debug=False): for group in self.tokens: for token in group: color_name = None name_parts = token.name.split('.') for i in range(0, len(name_parts)): if '.'.join(name_parts[i:]) in token_colors: color_name = token_colors['.'.join(name_parts[i:])] break if color_name is not None: sys.stdout.write(color_dict[color_name]) pass elif debug: raise Exception, "no highlighting for %r" % token.name else: color_name = 'white' sys.stdout.write(color_dict[color_name]) sys.stdout.write(token.string) sys.stdout.write('\n') def delete_token(self, y, i): assert y < len(self.tokens), "%d < %d" % (y, len(self.tokens)) assert i < len(self.tokens[y]), "%d < %d" % (i, len(self.tokens[i])) deleted = [] deleted.append(self.tokens[y].pop(i)) while y < len(self.tokens): while i < len(self.tokens[y]): while deleted and self.tokens[y][i].parent is not deleted[-1]: del deleted[-1] if not deleted: return elif self.tokens[y][i].parent is deleted[-1]: deleted.append(self.tokens[y].pop(i)) else: raise Exception, "huh?? %r %r" % (self.tokens[y][i].parent, deleted) i = 0 y += 1 def highlight(self, lines): self.tokens = [[] for l in lines] for token in self.lexer.lex(lines, y=0, x=0): self.tokens[token.y].append(token) # relexing # ====================== def relex(self, lines, y1, x1, y2, x2, token=None): if token: gen = self.lexer.resume(lines, y1, 0, token) else: gen = self.lexer.lex(lines, y1, 0) # these keep track of the current y coordinate, the current token index # on line[y], and the current "new token", respectively. y = y1 i = 0 getnext = True new_token = None while True: # if we have overstepped our bounds, then exit! if y >= len(lines): break # if we need another new_token, then try to get it. if getnext: try: new_token = gen.next() getnext = False except StopIteration: # ok, so this means that ALL the rest of the tokens didn't # show up, because we're done. so delete them and exit for j in range(y, len(lines)): del self.tokens[j][i:] i = 0 break # if our next token is one a future line, we need to just get rid of # all our old tokens until we get there #onfuture = False while new_token.y > y: del self.tokens[y][i:] i = 0 y += 1 # ok, so see if we have current tokens on this line; if so get it if i < len(self.tokens[y]): old_token = self.tokens[y][i] assert old_token.y == y, "%d == %d" % (old_token.y, y) else: #raise Exception, "K %d %r" % (i, new_token) old_token = None if old_token is None: #raise Exception, "J %d %r" % (i, new_token) # since we don't have a previous token at this location, just # insert the new one self.tokens[y].insert(i, new_token) i += 1 getnext = True elif old_token == new_token: # if they match, then leave the old one alone i += 1 getnext = True if new_token.y > y2: # in this case, we can be sure that the rest of the lines # will lex the same way break elif old_token.x < new_token.end_x(): # ok, so we haven't gotten to this new token yet. obviously # this token never showed up in the new lexing, so delete it. del self.tokens[y][i] elif old_token.x >= new_token.end_x(): # ok, this token is further out, so just insert the new token # ahead of it, move our counter out and continue self.tokens[y].insert(i, new_token) i += 1 getnext = True else: # this should never happen raise Exception, "this isn't happening" # deletion # ====================== def update_del(self, lines, y1, x1, y2, x2): assert y1 >= 0 assert y1 <= y2 # first let's delete any token who falls in the range of the change (or, # in the case of child tokens, whose parent is being deleted). y = y1 i = 0 done = False if self.tokens[y1]: ctoken = self.tokens[y1][0] else: ctoken = None while not done: if y >= len(self.tokens): break if i < len(self.tokens[y]): # figure out if this token is in our range. notice that # delete_token() will take care of the need to recursively # delete children for us token = self.tokens[y][i] if token.y > y2 or y == y2 and token.x >= x2: done = True elif token.y < y1 or token.y == y1 and token.x < x1: i += 1 else: self.delete_token(y, i) y += 1 i = 0 # ok, so now we need to "adjust" the (x,y) coordinates of all the tokens # after the change. first we will copy over the pre-deletion tokens. newtokens = [[] for x in range(0, len(self.tokens) - y2 + y1)] for y in range(0, y1): for token in self.tokens[y]: newtokens[y].append(token) # then the tokens which occured on the same line as the end of the # deletion. for token in self.tokens[y1]: newtokens[y1].append(token) if y2 != y1: for token in self.tokens[y2]: token.x = token.x - x2 + x1 token.y = y1 newtokens[y1].append(token) # finally, we will copy over the tokens from subsequent lines for y in range(y2 + 1, len(self.tokens)): for token in self.tokens[y]: token.y = token.y - y2 + y1 newtokens[y - y2 + y1].append(token) # now save our new tokens self.tokens = newtokens return ctoken def relex_del(self, lines, y1, x1, y2, x2): # first let's update our existing tokens to fix their offsets, etc. ctoken = self.update_del(lines, y1, x1, y2, x2) # then let's do some relexing self.relex(lines, y1, x1, y2, x2, ctoken) # addition # ====================== def update_add(self, lines, y1, x1, newlines): assert y1 >= 0 assert len(newlines) > 0 y2 = y1 + len(newlines) - 1 if y2 == y1: x2 = x1 + len(newlines[0]) else: x2 = len(newlines[-1]) xdelta = x2 - x1 ydelta = y2 - y1 if self.tokens[y1]: ctoken = self.tokens[y1][0] else: ctoken = None # construct a new token data structure, with the right number of lines newtokens = [] for i in range(0, len(self.tokens) + ydelta): newtokens.append([]) # copy the tokens that show up before the changed line for y in range(0, y1): newtokens[y] = self.tokens[y] # process the tokens that show up on the changed line post_change_list = [] for t in self.tokens[y1]: tx1 = t.x tx2 = t.x + len(t.string) if tx2 <= x1: # '*| ' before the insertion newtokens[y1].append(t) elif tx1 >= x1: # ' |*' after the insertion t.x += xdelta t.y = y2 post_change_list.append(t) else: # '*|*' around the insertion t1 = t.copy() t1.string = t.string[:x1 - tx1] newtokens[y1].append(t1) t2 = t.copy() t2.string = t.string[x1 - tx1:] t2.x = x2 t2.y = y2 post_change_list.append(t2) # add in the new data newtokens[y1].append(Token('new', '', y1, x1, newlines[0])) for i in range(1, len(newlines)): yi = y1 + i newtokens[yi].append(Token('new', '', yi, 0, newlines[i])) # add the post-change tokens back for t in post_change_list: newtokens[y2].append(t) # for each subsequent line, fix it's tokens' y coordinates for y in range(y1 + 1, len(self.tokens)): for t in self.tokens[y]: t.y += ydelta newtokens[t.y].append(t) # ok, now that we have built a correct new structure, store a reference # to it instead. self.tokens = newtokens return ctoken def relex_add(self, lines, y1, x1, newlines): # first let's update our existing tokens to fix their offsets, etc. ctoken = self.update_add(lines, y1, x1, newlines) # create some extra info that we need y2 = y1 + len(newlines) - 1 if y2 == y1: x2 = x1 + len(newlines[0]) else: x2 = len(newlines[-1]) # now let's start the relexing process self.relex(lines, y1, x1, y2, x2, ctoken)