pmacs3/highlight2.py

310 lines
11 KiB
Python

import sys
from lex2 import Token
color_list = []
color_list.extend(['\033[3%dm' % x for x in range(0, 8)])
color_list.extend(['\033[3%d;1m' % x for x in range(0, 8)])
color_list.extend(['\033[0m'])
color_names = [
'black', 'dred', 'dgreen', 'brown', 'dblue', 'dpurple', 'dcyan', 'lgrey',
'dgrey', 'lred', 'lgreen', 'yellow', 'lblue', 'lpurple', 'lcyan', 'white',
'unset',
]
color_dict ={}
for i in range(0, len(color_list)):
color_dict[color_names[i]] = color_list[i]
class Highlighter:
def __init__(self, lexer):
self.lexer = lexer
self.tokens = []
def dump(self, fmt='(%3s, %2s) | %s'):
print fmt % ('y', 'x', 'string')
for i in range(0, len(self.tokens)):
group = self.tokens[i]
print 'LINE %d' % i
for token in group:
print fmt % (token.y, token.x, token.string)
def display(self, token_colors={}, debug=False):
for group in self.tokens:
for token in group:
color_name = None
name_parts = token.name.split('.')
for i in range(0, len(name_parts)):
if '.'.join(name_parts[i:]) in token_colors:
color_name = token_colors['.'.join(name_parts[i:])]
break
if color_name is not None:
sys.stdout.write(color_dict[color_name])
pass
elif debug:
raise Exception, "no highlighting for %r" % token.name
else:
color_name = 'white'
sys.stdout.write(color_dict[color_name])
sys.stdout.write(token.string)
sys.stdout.write('\n')
def delete_token(self, y, i):
assert y < len(self.tokens), "%d < %d" % (y, len(self.tokens))
assert i < len(self.tokens[y]), "%d < %d" % (i, len(self.tokens[i]))
deleted = []
deleted.append(self.tokens[y].pop(i))
while y < len(self.tokens):
while i < len(self.tokens[y]):
while deleted and self.tokens[y][i].parent is not deleted[-1]:
del deleted[-1]
if not deleted:
return
elif self.tokens[y][i].parent is deleted[-1]:
deleted.append(self.tokens[y].pop(i))
else:
raise Exception, "huh?? %r %r" % (self.tokens[y][i].parent,
deleted)
i = 0
y += 1
def highlight(self, lines):
self.tokens = [[] for l in lines]
self.lexer.lex(lines, y=0, x=0)
for token in self.lexer:
self.tokens[token.y].append(token)
# relexing
# ======================
def relex(self, lines, y1, x1, y2, x2, token=None):
if token:
self.lexer.resume(lines, y1, 0, token)
else:
self.lexer.lex(lines, y1, 0)
# these keep track of the current y coordinate, the current token index
# on line[y], and the current "new token", respectively.
y = y1
i = 0
getnext = True
new_token = None
while True:
# if we have overstepped our bounds, then exit!
if y >= len(lines):
break
# if we need another new_token, then try to get it.
if getnext:
try:
new_token = self.lexer.next()
getnext = False
except StopIteration:
# ok, so this means that ALL the rest of the tokens didn't
# show up, because we're done. so delete them and exit
for j in range(y, len(lines)):
del self.tokens[j][i:]
i = 0
break
# if our next token is one a future line, we need to just get rid of
# all our old tokens until we get there
while new_token.y > y:
del self.tokens[y][i:]
i = 0
y += 1
# ok, so see if we have current tokens on this line; if so get it
if i < len(self.tokens[y]):
old_token = self.tokens[y][i]
assert old_token.y == y, "%d == %d" % (old_token.y, y)
else:
#raise Exception, "K %d %r" % (i, new_token)
old_token = None
if old_token is None:
#raise Exception, "J %d %r" % (i, new_token)
# since we don't have a previous token at this location, just
# insert the new one
self.tokens[y].insert(i, new_token)
i += 1
getnext = True
elif old_token == new_token:
# if they match, then leave the old one alone
i += 1
getnext = True
if new_token.y > y2:
# in this case, we can be sure that the rest of the lines
# will lex the same way
break
elif old_token.x < new_token.end_x():
# ok, so we haven't gotten to this new token yet. obviously
# this token never showed up in the new lexing, so delete it.
del self.tokens[y][i]
elif old_token.x >= new_token.end_x():
# ok, this token is further out, so just insert the new token
# ahead of it, move our counter out and continue
self.tokens[y].insert(i, new_token)
i += 1
getnext = True
else:
# this should never happen
raise Exception, "this isn't happening"
# deletion
# ======================
def update_del(self, lines, y1, x1, y2, x2):
assert y1 >= 0
assert y1 <= y2
# first let's delete any token who falls in the range of the change (or,
# in the case of child tokens, whose parent is being deleted).
y = y1
i = 0
done = False
if self.tokens[y1]:
ctoken = self.tokens[y1][0]
else:
ctoken = None
while not done:
if y >= len(self.tokens):
break
if i < len(self.tokens[y]):
# figure out if this token is in our range. notice that
# delete_token() will take care of the need to recursively
# delete children for us
token = self.tokens[y][i]
if token.y > y2 or y == y2 and token.x >= x2:
done = True
elif token.y < y1 or token.y == y1 and token.x < x1:
i += 1
else:
self.delete_token(y, i)
y += 1
i = 0
# ok, so now we need to "adjust" the (x,y) coordinates of all the tokens
# after the change. first we will copy over the pre-deletion tokens.
newtokens = [[] for x in range(0, len(self.tokens) - y2 + y1)]
for y in range(0, y1):
for token in self.tokens[y]:
newtokens[y].append(token)
# then the tokens which occured on the same line as the end of the
# deletion.
for token in self.tokens[y1]:
newtokens[y1].append(token)
if y2 != y1:
for token in self.tokens[y2]:
token.x = token.x - x2 + x1
token.y = y1
newtokens[y1].append(token)
# finally, we will copy over the tokens from subsequent lines
for y in range(y2 + 1, len(self.tokens)):
for token in self.tokens[y]:
token.y = token.y - y2 + y1
newtokens[y - y2 + y1].append(token)
# now save our new tokens
self.tokens = newtokens
return ctoken
def relex_del(self, lines, y1, x1, y2, x2):
# first let's update our existing tokens to fix their offsets, etc.
ctoken = self.update_del(lines, y1, x1, y2, x2)
# then let's do some relexing
self.relex(lines, y1, x1, y2, x2, ctoken)
# addition
# ======================
def update_add(self, lines, y1, x1, newlines):
assert y1 >= 0
assert len(newlines) > 0
y2 = y1 + len(newlines) - 1
if y2 == y1:
x2 = x1 + len(newlines[0])
else:
x2 = len(newlines[-1])
xdelta = x2 - x1
ydelta = y2 - y1
if self.tokens[y1]:
ctoken = self.tokens[y1][0]
else:
ctoken = None
# construct a new token data structure, with the right number of lines
newtokens = []
for i in range(0, len(self.tokens) + ydelta):
newtokens.append([])
# copy the tokens that show up before the changed line
for y in range(0, y1):
newtokens[y] = self.tokens[y]
# process the tokens that show up on the changed line
post_change_list = []
for t in self.tokens[y1]:
tx1 = t.x
tx2 = t.x + len(t.string)
ty = t.y
ts = t.string
if tx2 <= x1:
# '*| ' before the insertion
newtokens[y1].append(t)
elif tx1 >= x1:
# ' |*' after the insertion
t.x += xdelta
t.y = y2
post_change_list.append(t)
else:
# '*|*' around the insertion
t1 = t.copy()
t1.string = t.string[:x1 - tx1]
newtokens[y1].append(t1)
t2 = t.copy()
t2.string = t.string[x1 - tx1:]
t2.x = x2
t2.y = y2
post_change_list.append(t2)
# add in the new data
newtokens[y1].append(Token('new', '', y1, x1, newlines[0]))
for i in range(1, len(newlines)):
yi = y1 + i
newtokens[yi].append(Token('new', '', yi, 0, newlines[i]))
# add the post-change tokens back
for t in post_change_list:
newtokens[y2].append(t)
# for each subsequent line, fix it's tokens' y coordinates
for y in range(y1 + 1, len(self.tokens)):
for t in self.tokens[y]:
t.y += ydelta
newtokens[t.y].append(t)
# ok, now that we have built a correct new structure, store a reference
# to it instead.
self.tokens = newtokens
return ctoken
def relex_add(self, lines, y1, x1, newlines):
# first let's update our existing tokens to fix their offsets, etc.
ctoken = self.update_add(lines, y1, x1, newlines)
# create some extra info that we need
y2 = y1 + len(newlines) - 1
if y2 == y1:
x2 = x1 + len(newlines[0])
else:
x2 = len(newlines[-1])
# now let's start the relexing process
self.relex(lines, y1, x1, y2, x2, ctoken)