( math32.tal ) ( ) ( This library supports arithmetic on 32-bit unsigned integers, ) ( also known as long values. ) ( ) ( 32-bit long values are represented by two 16-bit short values: ) ( ) ( decimal hexadecimal uxn literals ) ( 0 0x00000000 #0000 #0000 ) ( 1 0x00000001 #0000 #0001 ) ( 4660 0x00001234 #0000 #1234 ) ( 65535 0x0000ffff #0000 #ffff ) ( 65536 0x00010000 #0001 #0000 ) ( 16777215 0x00ffffff #00ff #ffff ) ( 4294967295 0xffffffff #ffff #ffff ) ( ) ( The most significant 16-bit, the "high bits", are stored first. ) ( We document long values as x** -- equivalent to xhi* xlo*. ) ( ) ( Operations supported: ) ( ) ( NAME STACK EFFECT DEFINITION ) ( add32 x** y** -> z** x + y ) ( sub32 x** y** -> z** x - y ) ( mul16 x* y* -> z** x * y ) ( mul32 x** y** -> z** x * y ) ( div32 x** y** -> q** x / y ) ( mod32 x** y** -> r** x % y ) ( divmod32 x** y** -> q** r** x / y, x % y ) ( gcd32 x** y** -> z** gcd(x, y) ) ( negate32 x** -> z** -x ) ( lshift32 x** n^ -> z** x< z** x>>n ) ( and32 x** y** -> z** x & y ) ( or32 x** y** -> z** x | y ) ( xor32 x** y** -> z** x ^ y ) ( complement32 x** -> z** ~x ) ( eq32 x** y** -> bool^ x == y ) ( ne32 x** y** -> bool^ x != y ) ( is-zero32 x** -> bool^ x == 0 ) ( non-zero32 x** -> bool^ x != 0 ) ( lt32 x** y** -> bool^ x < y ) ( gt32 x** y** -> bool^ x > y ) ( lteq32 x** y** -> bool^ x <= y ) ( gteq32 x** y** -> bool^ x >= y ) ( bitcount8 x^ -> bool^ floor(log2(x))+1 ) ( bitcount16 x* -> bool^ floor(log2(x))+1 ) ( bitcount32 x** -> bool^ floor(log2(x))+1 ) ( ) ( In addition to the code this file uses 44 bytes of registers ) ( to store temporary state: ) ( ) ( - shared memory, 16 bytes ) ( - mul32 memory, 12 bytes ) ( - _divmod32 memory, 16 bytes ) %DEBUG { #ff #0e DEO } %RTN { JMP2r } %TOR { ROT ROT } ( a b c -> c a b ) %COMPLEMENT32 { SWP2 #ffff EOR2 SWP2 #ffff EOR2 } %DUP4 { OVR2 OVR2 } %POP4 { POP2 POP2 } ( bitcount: number of bits needed to represent number ) ( equivalent to floor[log2[x]] + 1 ) @bitcount8 ( x^ -> n^ ) #00 SWP ( n x ) &loop DUP #00 EQU ( n x x=0 ) ,&done JCN ( n x ) #01 SFT ( n x>>1 ) SWP INC SWP ( n+1 x>>1 ) ,&loop JMP &done POP ( n ) RTN @bitcount16 ( x* -> n^ ) SWP ( xlo xhi ) ;bitcount8 JSR2 ( xlo nhi ) DUP #00 NEQ ( xlo nhi nhi!=0 ) ,&hi-set JCN ( xlo nhi ) SWP ;bitcount8 JSR2 ADD ( nhi+nlo ) RTN &hi-set SWP POP #08 ADD ( nhi+8 ) RTN @bitcount32 ( x** -> n^ ) SWP2 ( xlo* xhi* ) ;bitcount16 JSR2 ( xlo* nhi ) DUP #00 NEQ ( xlo* nhi nhi!=0 ) ,&hi-set JCN ( xlo* nhi ) TOR ;bitcount16 JSR2 ADD RTN ( nhi+nlo ) &hi-set TOR POP2 #10 ADD ( nhi+16 ) RTN ( equality ) ( x == y ) @eq32 ( xhi* xlo* yhi* ylo* -> bool^ ) ROT2 EQU2 STH EQU2 STHr AND RTN ( x != y ) @ne32 ( xhi* xlo* yhi* ylo* -> bool^ ) ROT2 NEQ2 STH NEQ2 STHr ORA RTN ( x == 0 ) @is-zero32 ( x** -> bool^ ) ORA2 #0000 EQU2 RTN ( x != 0 ) @non-zero32 ( x** -> bool^ ) ORA2 #0000 NEQ2 RTN ( comparisons ) ( x < y ) @lt32 ( x** y** -> bool^ ) ROT2 SWP2 ( xhi yhi xlo ylo ) LTH2 ,<-lo JCN ( xhi yhi ) LTH2 RTN <-lo GTH2 #00 EQU RTN ( x <= y ) @lteq32 ( x** y** -> bool^ ) ROT2 SWP2 ( xhi yhi xlo ylo ) GTH2 ,>-lo JCN ( xhi yhi ) GTH2 #00 EQU RTN >-lo LTH2 RTN ( x > y ) @gt32 ( x** y** -> bool^ ) ROT2 SWP2 ( xhi yhi xlo ylo ) GTH2 ,>-lo JCN ( xhi yhi ) GTH2 RTN >-lo LTH2 #00 EQU RTN ( x > y ) @gteq32 ( x** y** -> bool^ ) ROT2 SWP2 ( xhi yhi xlo ylo ) LTH2 ,<-lo JCN ( xhi yhi ) LTH2 #00 EQU RTN <-lo GTH2 RTN ( bitwise operations ) ( x & y ) @and32 ( xhi* xlo* yhi* ylo* -> xhi|yhi* xlo|ylo* ) ROT2 AND2 STH2 AND2 STH2r RTN ( x | y ) @or32 ( xhi* xlo* yhi* ylo* -> xhi|yhi* xlo|ylo* ) ROT2 ORA2 STH2 ORA2 STH2r RTN ( x ^ y ) @xor32 ( xhi* xlo* yhi* ylo* -> xhi|yhi* xlo|ylo* ) ROT2 EOR2 STH2 EOR2 STH2r RTN ( ~x ) @complement32 ( x** -> ~x** ) COMPLEMENT32 RTN ( temporary registers ) ( shared by most operations, except mul32 and div32 ) [ @x0 $1 @x1 $1 @x2 $1 @x3 $1 @y0 $1 @y1 $1 @y2 $1 @y3 $1 @z0 $1 @z1 $1 @z2 $1 @z3 $1 @w0 $1 @w1 $1 @w2 $2 ] ( bit shifting ) ( x >> n ) @rshift32 ( x** n^ -> x< x< x< x< x< x< x< x< x< x< zhi* zlo* ) ;y2 STA2 ;y0 STA2 ( save ylo, yhi ) ;x2 STA2 ;x0 STA2 ( save xlo, xhi ) #0000 #0000 ;z0 STA2 ;z2 STA2 ( reset zhi, zlo ) ( x3 + y3 => z2z3 ) #00 ;x3 LDA #00 ;y3 LDA ADD2 ;z2 STA2 ( x2 + y2 + z2 => z1z2 ) #00 ;x2 LDA ;z1 LDA2 ADD2 ;z1 STA2 #00 ;y2 LDA ;z1 LDA2 ADD2 ;z1 STA2 ( x1 + y1 + z1 => z0z1 ) #00 ;x1 LDA ;z0 LDA2 ADD2 ;z0 STA2 #00 ;y1 LDA ;z0 LDA2 ADD2 ;z0 STA2 ( x0 + y0 + z0 => z0 ) ;x0 LDA ;z0 LDA ADD ;z0 STA ;y0 LDA ;z0 LDA ADD ;z0 STA ( load zhi,zlo ) ;z0 LDA2 ;z2 LDA2 RTN ( -x ) @negate32 ( x** -> -x** ) COMPLEMENT32 INC2 ( ~xhi -xlo ) DUP2 #0000 NEQ2 ( ~xhi -xlo non-zero? ) ,&done JCN ( xlo non-zero => don't inc hi ) SWP2 INC2 SWP2 ( -xhi -xlo ) &done RTN ( x - y ) @sub32 ( x** y** -> z** ) ;negate32 JSR2 ;add32 JSR2 RTN ( 16-bit multiplication ) @mul16 ( x* y* -> z** ) ;y1 STA ;y0 STA ( save ylo, yhi ) ;x1 STA ;x0 STA ( save xlo, xhi ) #0000 #00 ;z1 STA2 ;z3 STA ( reset z1,z2,z3 ) #0000 #00 ;w0 STA2 ;w2 STA ( reset w0,w1,w2 ) ( x1 * y1 => z1z2 ) #00 ;x1 LDA #00 ;y1 LDA MUL2 ;z2 STA2 ( x0 * y1 => z0z1 ) #00 ;x0 LDA #00 ;y1 LDA MUL2 ;z1 LDA2 ADD2 ;z1 STA2 ( x1 * y0 => w1w2 ) #00 ;x1 LDA #00 ;y0 LDA MUL2 ;w1 STA2 ( x0 * y0 => w0w1 ) #00 ;x0 LDA #00 ;y0 LDA MUL2 ;w0 LDA2 ADD2 ;w0 STA2 ( add z and a<<8 ) #00 ;z1 LDA2 ;z3 LDA ;w0 LDA2 ;w2 LDA #00 ;add32 JSR2 RTN ( x * y ) @mul32 ( x** y** -> z** ) ,&y1 STR2 ,&y0 STR2 ( save ylo, yhi ) ,&x1 STR2 ,&x0 STR2 ( save xlo, xhi ) ,&y1 LDR2 ,&x1 LDR2 ;mul16 JSR2 ( [x1*y1] ) ,&z1 STR2 ,&z0 STR2 ( sum = x1*y1, save zlo, zhi ) ,&y1 LDR2 ,&x0 LDR2 MUL2 ( [x0*y1]<<16 ) ,&y0 LDR2 ,&x1 LDR2 MUL2 ( [x1*y0]<<16 ) ( [x0*y0]<<32 will completely overflow ) ADD2 ,&z0 LDR2 ADD2 ( sum += x0*y1<<16 + x1*y0<<16 ) ,&z1 LDR2 RTN [ &x0 $2 &x1 $2 &y0 $2 &y1 $2 &z0 $2 &z1 $2 ] @div32 ( x** y** -> q** ) ;_divmod32 JSR2 ;_divmod32/quo0 LDA2 ;_divmod32/quo1 LDA2 RTN @mod32 ( x** y** -> r** ) ;_divmod32 JSR2 ;_divmod32/rem0 LDA2 ;_divmod32/rem1 LDA2 RTN @divmod32 ( x** y** -> q** r** ) ;_divmod32 JSR2 ;_divmod32/quo0 LDA2 ;_divmod32/quo1 LDA2 ;_divmod32/rem0 LDA2 ;_divmod32/rem1 LDA2 RTN ( calculate and store x / y and x % y ) @_divmod32 ( x** y** -> ) ( store y and x for repeated use ) ,&div1 STR2 ,&div0 STR2 ( y -> div ) ,&rem1 STR2 ,&rem0 STR2 ( x -> rem ) ( if x < y then the answer is 0 ) ,&rem0 LDR2 ,&rem1 LDR2 ,&div0 LDR2 ,&div1 LDR2 ;lt32 JSR2 ,&is-zero JCN ,¬-zero JMP &is-zero #0000 ,&quo0 STR2 #0000 ,&quo1 STR2 RTN ( x >= y so the answer is >= 1 ) ¬-zero #0000 ,&quo0 STR2 #0000 ,&quo1 STR2 ( 0 -> quo ) ( bitcount[x] - bitcount[y] determines the largest multiple of y to try ) ,&rem0 LDR2 ,&rem1 LDR2 ;bitcount32 JSR2 ( rbits^ ) ,&div0 LDR2 ,&div1 LDR2 ;bitcount32 JSR2 ( rbits^ dbits^ ) SUB ( shift=rbits-dits ) #00 DUP2 ( shift 0 shift 0 ) ( 1< cur ) #0000 #0001 ROT2 POP ;lshift32 JSR2 ,&cur1 STR2 ,&cur0 STR2 ( div< div ) ,&div0 LDR2 ,&div1 LDR2 ROT2 POP ;lshift32 JSR2 ,&div1 STR2 ,&div0 STR2 ,&loop JMP [ &div0 $2 &div1 $2 &rem0 $2 &rem1 $2 &quo0 $2 &quo1 $2 &cur0 $2 &cur1 $2 ] &loop ( if rem >= the current divisor, we can subtract it and add to quotient ) ,&rem0 LDR2 ,&rem1 LDR2 ,&div0 LDR2 ,&div1 LDR2 ;lt32 JSR2 ( is rem < div? ) ,&rem-lt JCN ( if rem < div skip this iteration ) ( since rem >= div, we have found a multiple of y that divides x ) ,&rem0 LDR2 ,&rem1 LDR2 ,&div0 LDR2 ,&div1 LDR2 ;sub32 JSR2 ,&rem1 STR2 ,&rem0 STR2 ( rem -= div ) ,&quo0 LDR2 ,&quo1 LDR2 ,&cur0 LDR2 ,&cur1 LDR2 ;add32 JSR2 ,&quo1 STR2 ,&quo0 STR2 ( quo += cur ) &rem-lt ,&div0 LDR2 ,&div1 LDR2 #01 ;rshift32 JSR2 ,&div1 STR2 ,&div0 STR2 ( div >>= 1 ) ,&cur0 LDR2 ,&cur1 LDR2 #01 ;rshift32 JSR2 ,&cur1 STR2 ,&cur0 STR2 ( cur >>= 1 ) ,&cur0 LDR2 ,&cur1 LDR2 ;non-zero32 JSR2 ,&loop JCN ( if cur>0, loop. else we're done ) RTN ( greatest common divisor - euclidean algorithm ) @gcd32 ( x** y** -> z** ) &loop ( x y ) DUP4 ( x y y ) ;is-zero32 JSR2 ( x y y=0? ) ,&done JCN ( x y ) DUP4 ( x y y ) STH2 STH2 ( x y [y] ) ;mod32 JSR2 ( r=x%y [y] ) STH2r ( rhi rlo yhi [ylo] ) ROT2 ( rlo yhi rhi [ylo] ) ROT2 ( yhi rhi rlo [ylo] ) STH2r ( yhi rhi rlo ylo ) ROT2 ( yhi rlo ylo rhi ) ROT2 ( yhi ylo rhi rlo ) ,&loop JMP &done POP4 ( x ) RTN