157 lines
4.6 KiB
C
157 lines
4.6 KiB
C
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
/// \file fastpos.h
|
||
|
/// \brief Kind of two-bit version of bit scan reverse
|
||
|
//
|
||
|
// Copyright (C) 1999-2007 Igor Pavlov
|
||
|
// Copyright (C) 2008 Lasse Collin
|
||
|
//
|
||
|
// This library is free software; you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public
|
||
|
// License as published by the Free Software Foundation; either
|
||
|
// version 2.1 of the License, or (at your option) any later version.
|
||
|
//
|
||
|
// This library is distributed in the hope that it will be useful,
|
||
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
// Lesser General Public License for more details.
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
#ifndef LZMA_FASTPOS_H
|
||
|
#define LZMA_FASTPOS_H
|
||
|
|
||
|
// LZMA encodes match distances (positions) by storing the highest two
|
||
|
// bits using a six-bit value [0, 63], and then the missing lower bits.
|
||
|
// Dictionary size is also stored using this encoding in the new .lzma
|
||
|
// file format header.
|
||
|
//
|
||
|
// fastpos.h provides a way to quickly find out the correct six-bit
|
||
|
// values. The following table gives some examples of this encoding:
|
||
|
//
|
||
|
// pos return
|
||
|
// 0 0
|
||
|
// 1 1
|
||
|
// 2 2
|
||
|
// 3 3
|
||
|
// 4 4
|
||
|
// 5 4
|
||
|
// 6 5
|
||
|
// 7 5
|
||
|
// 8 6
|
||
|
// 11 6
|
||
|
// 12 7
|
||
|
// ... ...
|
||
|
// 15 7
|
||
|
// 16 8
|
||
|
// 17 8
|
||
|
// ... ...
|
||
|
// 23 8
|
||
|
// 24 9
|
||
|
// 25 9
|
||
|
// ... ...
|
||
|
//
|
||
|
//
|
||
|
// Provided functions or macros
|
||
|
// ----------------------------
|
||
|
//
|
||
|
// get_pos_slot(pos) is the basic version. get_pos_slot_2(pos)
|
||
|
// assumes that pos >= FULL_DISTANCES, thus the result is at least
|
||
|
// FULL_DISTANCES_BITS * 2. Using get_pos_slot(pos) instead of
|
||
|
// get_pos_slot_2(pos) would give the same result, but get_pos_slot_2(pos)
|
||
|
// should be tiny bit faster due to the assumption being made.
|
||
|
//
|
||
|
//
|
||
|
// Size vs. speed
|
||
|
// --------------
|
||
|
//
|
||
|
// With some CPUs that have fast BSR (bit scan reverse) instruction, the
|
||
|
// size optimized version is slightly faster than the bigger table based
|
||
|
// approach. Such CPUs include Intel Pentium Pro, Pentium II, Pentium III
|
||
|
// and Core 2 (possibly others). AMD K7 seems to have slower BSR, but that
|
||
|
// would still have speed roughly comparable to the table version. Older
|
||
|
// x86 CPUs like the original Pentium have very slow BSR; on those systems
|
||
|
// the table version is a lot faster.
|
||
|
//
|
||
|
// On some CPUs, the table version is a lot faster when using position
|
||
|
// dependent code, but with position independent code the size optimized
|
||
|
// version is slightly faster. This occurs at least on 32-bit SPARC (no
|
||
|
// ASM optimizations).
|
||
|
//
|
||
|
// I'm making the table version the default, because that has good speed
|
||
|
// on all systems I have tried. The size optimized version is sometimes
|
||
|
// slightly faster, but sometimes it is a lot slower.
|
||
|
//
|
||
|
// Finally, this code isn't a major bottle neck in LZMA encoding anyway.
|
||
|
|
||
|
#ifdef HAVE_SMALL
|
||
|
# include "bsr.h"
|
||
|
|
||
|
# define get_pos_slot(pos) ((pos) <= 4 ? (pos) : get_pos_slot_2(pos))
|
||
|
|
||
|
static inline uint32_t
|
||
|
get_pos_slot_2(uint32_t pos)
|
||
|
{
|
||
|
uint32_t i;
|
||
|
lzma_bsr(i, pos);
|
||
|
return (i + i) + ((pos >> (i - 1)) & 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
#else
|
||
|
|
||
|
#define FASTPOS_BITS 13
|
||
|
|
||
|
extern const uint8_t lzma_fastpos[1 << FASTPOS_BITS];
|
||
|
|
||
|
|
||
|
#define fastpos_shift(extra, n) \
|
||
|
((extra) + (n) * (FASTPOS_BITS - 1))
|
||
|
|
||
|
#define fastpos_limit(extra, n) \
|
||
|
(UINT32_C(1) << (FASTPOS_BITS + fastpos_shift(extra, n)))
|
||
|
|
||
|
#define fastpos_result(pos, extra, n) \
|
||
|
lzma_fastpos[(pos) >> fastpos_shift(extra, n)] \
|
||
|
+ 2 * fastpos_shift(extra, n)
|
||
|
|
||
|
|
||
|
static inline uint32_t
|
||
|
get_pos_slot(uint32_t pos)
|
||
|
{
|
||
|
// If it is small enough, we can pick the result directly from
|
||
|
// the precalculated table.
|
||
|
if (pos < fastpos_limit(0, 0))
|
||
|
return lzma_fastpos[pos];
|
||
|
|
||
|
if (pos < fastpos_limit(0, 1))
|
||
|
return fastpos_result(pos, 0, 1);
|
||
|
|
||
|
return fastpos_result(pos, 0, 2);
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef FULL_DISTANCES_BITS
|
||
|
static inline uint32_t
|
||
|
get_pos_slot_2(uint32_t pos)
|
||
|
{
|
||
|
// FIXME: This assert() cannot be enabled at the moment, because
|
||
|
// lzma_getoptimum.c calls this function so that this assertion
|
||
|
// fails; however, it ignores the result of this function when
|
||
|
// this assert() would have failed.
|
||
|
// assert(pos >= FULL_DISTANCES);
|
||
|
|
||
|
if (pos < fastpos_limit(FULL_DISTANCES_BITS - 1, 0))
|
||
|
return fastpos_result(pos, FULL_DISTANCES_BITS - 1, 0);
|
||
|
|
||
|
if (pos < fastpos_limit(FULL_DISTANCES_BITS - 1, 1))
|
||
|
return fastpos_result(pos, FULL_DISTANCES_BITS - 1, 1);
|
||
|
|
||
|
return fastpos_result(pos, FULL_DISTANCES_BITS - 1, 2);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#endif
|