liblzma: RISC-V filter: Use byte-by-byte access.
Not all RISC-V processors support fast unaligned access so it's better to read only one byte in the main loop. This can be faster even on x86-64 when compared to reading 32 bits at a time as half the time the address is only 16-bit aligned. The downside is larger code size on archs that do support fast unaligned access.
This commit is contained in:
parent
db5eb5f563
commit
50255feeaa
|
@ -370,28 +370,59 @@ riscv_encode(void *simple lzma_attribute((__unused__)),
|
|||
// The loop is advanced by 2 bytes every iteration since the
|
||||
// instruction stream may include 16-bit instructions (C extension).
|
||||
for (i = 0; i <= size; i += 2) {
|
||||
uint32_t inst = read32le(buffer + i);
|
||||
uint32_t inst = buffer[i];
|
||||
|
||||
if (inst == 0xEF) {
|
||||
// JAL
|
||||
const uint32_t b1 = buffer[i + 1];
|
||||
|
||||
// Only filter rd=x1(ra) and rd=x5(t0).
|
||||
if ((b1 & 0x0D) != 0)
|
||||
continue;
|
||||
|
||||
if ((inst & 0xDFF) == 0x0EF) {
|
||||
// JAL with rd=x1(ra) or rd=x5(t0)
|
||||
//
|
||||
// The 20-bit immediate is in four pieces.
|
||||
// The encoder stores it in big endian form
|
||||
// since it improves compression slightly.
|
||||
uint32_t addr
|
||||
= ((inst & 0x80000000) >> 11)
|
||||
| ((inst & 0x7FE00000) >> 20)
|
||||
| ((inst & 0x00100000) >> 9)
|
||||
| (inst & 0x000FF000);
|
||||
const uint32_t b2 = buffer[i + 2];
|
||||
const uint32_t b3 = buffer[i + 3];
|
||||
const uint32_t pc = now_pos + (uint32_t)i;
|
||||
|
||||
addr += now_pos + (uint32_t)i;
|
||||
// The following chart shows the highest three bytes of JAL, focusing on
|
||||
// the 20-bit immediate field [31:12]. The first row of numbers is the
|
||||
// bit position in a 32-bit little endian instruction. The second row of
|
||||
// numbers shows the order of the immediate field in a J-type instruction.
|
||||
// The last row is the bit number in each byte.
|
||||
//
|
||||
// To determine the amount to shift each bit, subtract the value in
|
||||
// the last row from the value in the second last row. If the number
|
||||
// is positive, shift left. If negative, shift right.
|
||||
//
|
||||
// For example, at the rightmost side of the chart, the bit 4 in b1 is
|
||||
// the bit 12 of the address. Thus that bit needs to be shifted left
|
||||
// by 12 - 4 = 8 bits to put it in the right place in the addr variable.
|
||||
//
|
||||
// NOTE: The immediate of a J-type instruction holds bits [20:1] of
|
||||
// the address. The bit [0] is always 0 and not part of the immediate.
|
||||
//
|
||||
// | b3 | b2 | b1 |
|
||||
// | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 | 15 14 13 12 x x x x |
|
||||
// | 20 10 9 8 7 6 5 4 | 3 2 1 11 19 18 17 16 | 15 14 13 12 x x x x |
|
||||
// | 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 | 7 6 5 4 x x x x |
|
||||
|
||||
inst = (inst & 0xFFF)
|
||||
| ((addr & 0x1E0000) >> 5)
|
||||
| ((addr & 0x01FE00) << 7)
|
||||
| ((addr & 0x0001FE) << 23);
|
||||
uint32_t addr = ((b1 & 0xF0) << 8)
|
||||
| ((b2 & 0x0F) << 16)
|
||||
| ((b2 & 0x10) << 7)
|
||||
| ((b2 & 0xE0) >> 4)
|
||||
| ((b3 & 0x7F) << 4)
|
||||
| ((b3 & 0x80) << 13);
|
||||
|
||||
write32le(buffer + i, inst);
|
||||
addr += pc;
|
||||
|
||||
buffer[i + 1] = (uint8_t)((b1 & 0x0F)
|
||||
| ((addr >> 13) & 0xF0));
|
||||
|
||||
buffer[i + 2] = (uint8_t)(addr >> 9);
|
||||
buffer[i + 3] = (uint8_t)(addr >> 1);
|
||||
|
||||
// The "-2" is included because the for-loop will
|
||||
// always increment by 2. In this case, we want to
|
||||
|
@ -401,7 +432,10 @@ riscv_encode(void *simple lzma_attribute((__unused__)),
|
|||
|
||||
} else if ((inst & 0x7F) == 0x17) {
|
||||
// AUIPC
|
||||
//
|
||||
inst |= (uint32_t)buffer[i + 1] << 8;
|
||||
inst |= (uint32_t)buffer[i + 2] << 16;
|
||||
inst |= (uint32_t)buffer[i + 3] << 24;
|
||||
|
||||
// Branch based on AUIPC's rd. The bitmask test does
|
||||
// the same thing as this:
|
||||
//
|
||||
|
@ -587,30 +621,50 @@ riscv_decode(void *simple lzma_attribute((__unused__)),
|
|||
|
||||
size_t i;
|
||||
for (i = 0; i <= size; i += 2) {
|
||||
uint32_t inst = read32le(buffer + i);
|
||||
uint32_t inst = buffer[i];
|
||||
|
||||
if ((inst & 0xDFF) == 0x0EF) {
|
||||
// JAL with rd=x1(ra) or rd=x5(t0)
|
||||
uint32_t addr
|
||||
= ((inst << 5) & 0x1E0000)
|
||||
| ((inst >> 7) & 0x01FE00)
|
||||
| ((inst >> 23) & 0x0001FE);
|
||||
if (inst == 0xEF) {
|
||||
// JAL
|
||||
const uint32_t b1 = buffer[i + 1];
|
||||
|
||||
addr -= now_pos + (uint32_t)i;
|
||||
// Only filter rd=x1(ra) and rd=x5(t0).
|
||||
if ((b1 & 0x0D) != 0)
|
||||
continue;
|
||||
|
||||
inst = (inst & 0xFFF)
|
||||
| ((addr << 11) & 0x80000000)
|
||||
| ((addr << 20) & 0x7FE00000)
|
||||
| ((addr << 9) & 0x00100000)
|
||||
| ( addr & 0x000FF000);
|
||||
const uint32_t b2 = buffer[i + 2];
|
||||
const uint32_t b3 = buffer[i + 3];
|
||||
const uint32_t pc = now_pos + (uint32_t)i;
|
||||
|
||||
// | b3 | b2 | b1 |
|
||||
// | 31 30 29 28 27 26 25 24 | 23 22 21 20 19 18 17 16 | 15 14 13 12 x x x x |
|
||||
// | 20 10 9 8 7 6 5 4 | 3 2 1 11 19 18 17 16 | 15 14 13 12 x x x x |
|
||||
// | 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 | 7 6 5 4 x x x x |
|
||||
|
||||
uint32_t addr = ((b1 & 0xF0) << 13)
|
||||
| (b2 << 9) | (b3 << 1);
|
||||
|
||||
addr -= pc;
|
||||
|
||||
buffer[i + 1] = (uint8_t)((b1 & 0x0F)
|
||||
| ((addr >> 8) & 0xF0));
|
||||
|
||||
buffer[i + 2] = (uint8_t)(((addr >> 16) & 0x0F)
|
||||
| ((addr >> 7) & 0x10)
|
||||
| ((addr << 4) & 0xE0));
|
||||
|
||||
buffer[i + 3] = (uint8_t)(((addr >> 4) & 0x7F)
|
||||
| ((addr >> 13) & 0x80));
|
||||
|
||||
write32le(buffer + i, inst);
|
||||
i += 4 - 2;
|
||||
|
||||
} else if ((inst & 0x7F) == 0x17) {
|
||||
// AUIPC
|
||||
uint32_t inst2;
|
||||
|
||||
inst |= (uint32_t)buffer[i + 1] << 8;
|
||||
inst |= (uint32_t)buffer[i + 2] << 16;
|
||||
inst |= (uint32_t)buffer[i + 3] << 24;
|
||||
|
||||
if (inst & 0xE80) {
|
||||
// AUIPC's rd doesn't equal x0 or x2.
|
||||
|
||||
|
|
Loading…
Reference in New Issue