Demystified the "state" variable in LZMA code. Use the

word literal instead of char for better consistency.
There are still some names with _char instead of _literal
in lzma_optimum, these may be changed later.

Renamed length coder variables.

This commit doesn't change the program logic.
This commit is contained in:
Lasse Collin 2008-03-22 00:57:33 +02:00
parent e6eb0a2675
commit 63b74d000e
6 changed files with 108 additions and 71 deletions

View File

@ -31,8 +31,6 @@
/////////////// ///////////////
#define REP_DISTANCES 4 #define REP_DISTANCES 4
#define STATES 12
#define LIT_STATES 7
#define POS_SLOT_BITS 6 #define POS_SLOT_BITS 6
#define DICT_LOG_SIZE_MAX 30 #define DICT_LOG_SIZE_MAX 30
@ -105,25 +103,62 @@
// State // // State //
/////////// ///////////
// Used for updating strm->data->state in both encoder and decoder. /// This enum is used to track which events have occurred most recently and
/// in which order. This information is used to predict the next event.
///
/// Events:
/// - Literal: One 8-bit byte
/// - Match: Repeat a chunk of data at some distance
/// - Long repeat: Multi-byte match at a recently seen distance
/// - Short repeat: One-byte repeat at a recently seen distance
///
/// The event names are in from STATE_oldest_older_previous. REP means
/// either short or long repeated match, and NONLIT means any non-literal.
typedef enum {
STATE_LIT_LIT,
STATE_MATCH_LIT_LIT,
STATE_REP_LIT_LIT,
STATE_SHORTREP_LIT_LIT,
STATE_MATCH_LIT,
STATE_REP_LIT,
STATE_SHORTREP_LIT,
STATE_LIT_MATCH,
STATE_LIT_LONGREP,
STATE_LIT_SHORTREP,
STATE_NONLIT_MATCH,
STATE_NONLIT_REP,
} lzma_lzma_state;
#define update_char(index) \
index = ((index) < 4 \
? 0 \
: ((index) < 10 \
? (index) - 3 \
: (index) - 6))
#define update_match(index) \ /// Total number of states
index = ((index) < LIT_STATES ? 7 : 10) #define STATES 12
#define update_rep(index) \ /// The lowest 7 states indicate that the previous state was a literal.
index = ((index) < LIT_STATES ? 8 : 11) #define LIT_STATES 7
#define update_short_rep(index) \
index = ((index) < LIT_STATES ? 9 : 11)
#define is_char_state(index) \ /// Indicate that the latest state was a literal.
((index) < LIT_STATES) #define update_literal(state) \
state = ((state) <= STATE_SHORTREP_LIT_LIT \
? STATE_LIT_LIT \
: ((state) <= STATE_LIT_SHORTREP \
? (state) - 3 \
: (state) - 6))
/// Indicate that the latest state was a match.
#define update_match(state) \
state = ((state) < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH)
/// Indicate that the latest state was a long repeated match.
#define update_long_rep(state) \
state = ((state) < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP)
/// Indicate that the latest state was a short match.
#define update_short_rep(state) \
state = ((state) < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP)
/// Test if the previous state was a literal.
#define is_literal_state(state) \
((state) < LIT_STATES)
#endif #endif

View File

@ -106,7 +106,7 @@ struct lzma_coder_s {
lzma_range_decoder rc; lzma_range_decoder rc;
// State // State
uint32_t state; lzma_lzma_state state;
uint32_t rep0; ///< Distance of the latest match uint32_t rep0; ///< Distance of the latest match
uint32_t rep1; ///< Distance of second latest match uint32_t rep1; ///< Distance of second latest match
uint32_t rep2; ///< Distance of third latest match uint32_t rep2; ///< Distance of third latest match
@ -143,10 +143,10 @@ struct lzma_coder_s {
probability pos_align_decoder[1 << ALIGN_BITS]; probability pos_align_decoder[1 << ALIGN_BITS];
/// Length of a match /// Length of a match
lzma_length_decoder len_decoder; lzma_length_decoder match_len_decoder;
/// Length of a repeated match. /// Length of a repeated match.
lzma_length_decoder rep_match_len_decoder; lzma_length_decoder rep_len_decoder;
/// True when we have produced at least one byte of output since the /// True when we have produced at least one byte of output since the
/// beginning of the stream or the latest flush marker. /// beginning of the stream or the latest flush marker.
@ -179,7 +179,7 @@ decode_dummy(const lzma_coder *restrict coder,
coder->literal_coder, now_pos, lz_get_byte(coder->lz, 0)); coder->literal_coder, now_pos, lz_get_byte(coder->lz, 0));
uint32_t symbol = 1; uint32_t symbol = 1;
if (is_char_state(state)) { if (is_literal_state(state)) {
// Decode literal without match byte. // Decode literal without match byte.
do { do {
if_bit_0(subcoder[symbol]) { if_bit_0(subcoder[symbol]) {
@ -222,8 +222,7 @@ decode_dummy(const lzma_coder *restrict coder,
if_bit_0(coder->is_rep[state]) { if_bit_0(coder->is_rep[state]) {
update_bit_0_dummy(); update_bit_0_dummy();
length_decode_dummy(len, coder->len_decoder, pos_state); length_decode_dummy(len, coder->match_len_decoder, pos_state);
update_match(state);
const uint32_t len_to_pos_state = get_len_to_pos_state(len); const uint32_t len_to_pos_state = get_len_to_pos_state(len);
uint32_t pos_slot = 0; uint32_t pos_slot = 0;
@ -291,7 +290,7 @@ decode_dummy(const lzma_coder *restrict coder,
} }
} }
length_decode_dummy(len, coder->rep_match_len_decoder, pos_state); length_decode_dummy(len, coder->rep_len_decoder, pos_state);
} }
} while (0); } while (0);
@ -364,7 +363,7 @@ decode_real(lzma_coder *restrict coder, const uint8_t *restrict in,
now_pos, lz_get_byte(coder->lz, 0)); now_pos, lz_get_byte(coder->lz, 0));
uint32_t symbol = 1; uint32_t symbol = 1;
if (is_char_state(state)) { if (is_literal_state(state)) {
// Decode literal without match byte. // Decode literal without match byte.
do { do {
if_bit_0(subcoder[symbol]) { if_bit_0(subcoder[symbol]) {
@ -408,7 +407,7 @@ decode_real(lzma_coder *restrict coder, const uint8_t *restrict in,
// decoder state, and start a new decoding loop. // decoder state, and start a new decoding loop.
coder->lz.dict[coder->lz.pos++] = (uint8_t)(symbol); coder->lz.dict[coder->lz.pos++] = (uint8_t)(symbol);
++now_pos; ++now_pos;
update_char(state); update_literal(state);
has_produced_output = true; has_produced_output = true;
continue; continue;
} }
@ -429,7 +428,7 @@ decode_real(lzma_coder *restrict coder, const uint8_t *restrict in,
// the value to distance. // the value to distance.
// Decode the length of the match. // Decode the length of the match.
length_decode(len, coder->len_decoder, pos_state); length_decode(len, coder->match_len_decoder, pos_state);
update_match(state); update_match(state);
@ -594,10 +593,10 @@ decode_real(lzma_coder *restrict coder, const uint8_t *restrict in,
rep0 = distance; rep0 = distance;
} }
// Decode the length of the repeated match. update_long_rep(state);
length_decode(len, coder->rep_match_len_decoder, pos_state);
update_rep(state); // Decode the length of the repeated match.
length_decode(len, coder->rep_len_decoder, pos_state);
} }
@ -746,23 +745,25 @@ lzma_lzma_decoder_init(lzma_next_coder *next, lzma_allocator *allocator,
// Len decoders (also bit/bittree) // Len decoders (also bit/bittree)
const uint32_t num_pos_states = 1 << next->coder->pos_bits; const uint32_t num_pos_states = 1 << next->coder->pos_bits;
bit_reset(next->coder->len_decoder.choice); bit_reset(next->coder->match_len_decoder.choice);
bit_reset(next->coder->len_decoder.choice2); bit_reset(next->coder->match_len_decoder.choice2);
bit_reset(next->coder->rep_match_len_decoder.choice); bit_reset(next->coder->rep_len_decoder.choice);
bit_reset(next->coder->rep_match_len_decoder.choice2); bit_reset(next->coder->rep_len_decoder.choice2);
for (uint32_t pos_state = 0; pos_state < num_pos_states; ++pos_state) { for (uint32_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
bittree_reset(next->coder->len_decoder.low[pos_state], LEN_LOW_BITS); bittree_reset(next->coder->match_len_decoder.low[pos_state],
bittree_reset(next->coder->len_decoder.mid[pos_state], LEN_MID_BITS);
bittree_reset(next->coder->rep_match_len_decoder.low[pos_state],
LEN_LOW_BITS); LEN_LOW_BITS);
bittree_reset(next->coder->rep_match_len_decoder.mid[pos_state], bittree_reset(next->coder->match_len_decoder.mid[pos_state],
LEN_MID_BITS);
bittree_reset(next->coder->rep_len_decoder.low[pos_state],
LEN_LOW_BITS);
bittree_reset(next->coder->rep_len_decoder.mid[pos_state],
LEN_MID_BITS); LEN_MID_BITS);
} }
bittree_reset(next->coder->len_decoder.high, LEN_HIGH_BITS); bittree_reset(next->coder->match_len_decoder.high, LEN_HIGH_BITS);
bittree_reset(next->coder->rep_match_len_decoder.high, LEN_HIGH_BITS); bittree_reset(next->coder->rep_len_decoder.high, LEN_HIGH_BITS);
next->coder->has_produced_output = false; next->coder->has_produced_output = false;

View File

@ -170,7 +170,7 @@ lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
lzma_read_match_distances(coder, &len, &num_distance_pairs); lzma_read_match_distances(coder, &len, &num_distance_pairs);
bit_encode_0(coder->is_match[coder->state][0]); bit_encode_0(coder->is_match[coder->state][0]);
update_char(coder->state); update_literal(coder->state);
const uint8_t cur_byte = coder->lz.buffer[ const uint8_t cur_byte = coder->lz.buffer[
coder->lz.read_pos - coder->additional_offset]; coder->lz.read_pos - coder->additional_offset];
@ -244,7 +244,7 @@ lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
probability *subcoder = literal_get_subcoder(coder->literal_coder, probability *subcoder = literal_get_subcoder(coder->literal_coder,
coder->now_pos, coder->previous_byte); coder->now_pos, coder->previous_byte);
if (is_char_state(coder->state)) { if (is_literal_state(coder->state)) {
literal_encode(subcoder, cur_byte); literal_encode(subcoder, cur_byte);
} else { } else {
const uint8_t match_byte = coder->lz.buffer[ const uint8_t match_byte = coder->lz.buffer[
@ -254,7 +254,7 @@ lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
literal_encode_matched(subcoder, match_byte, cur_byte); literal_encode_matched(subcoder, match_byte, cur_byte);
} }
update_char(coder->state); update_literal(coder->state);
coder->previous_byte = cur_byte; coder->previous_byte = cur_byte;
} else { } else {
@ -294,16 +294,16 @@ lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
if (len == 1) { if (len == 1) {
update_short_rep(coder->state); update_short_rep(coder->state);
} else { } else {
length_encode(coder->rep_match_len_encoder, length_encode(coder->rep_len_encoder,
len - MATCH_MIN_LEN, pos_state, len - MATCH_MIN_LEN, pos_state,
best_compression); best_compression);
update_rep(coder->state); update_long_rep(coder->state);
} }
} else { } else {
bit_encode_0(coder->is_rep[coder->state]); bit_encode_0(coder->is_rep[coder->state]);
update_match(coder->state); update_match(coder->state);
length_encode(coder->len_encoder, len - MATCH_MIN_LEN, length_encode(coder->match_len_encoder, len - MATCH_MIN_LEN,
pos_state, best_compression); pos_state, best_compression);
pos -= REP_DISTANCES; pos -= REP_DISTANCES;
@ -364,7 +364,7 @@ lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
const uint32_t len = coder->lz.sequence == SEQ_FLUSH const uint32_t len = coder->lz.sequence == SEQ_FLUSH
? LEN_SPECIAL_FLUSH : LEN_SPECIAL_EOPM; ? LEN_SPECIAL_FLUSH : LEN_SPECIAL_EOPM;
length_encode(coder->len_encoder, len - MATCH_MIN_LEN, length_encode(coder->match_len_encoder, len - MATCH_MIN_LEN,
pos_state, best_compression); pos_state, best_compression);
const uint32_t pos_slot = (1 << POS_SLOT_BITS) - 1; const uint32_t pos_slot = (1 << POS_SLOT_BITS) - 1;

View File

@ -63,7 +63,7 @@ do { \
#define get_rep_price(price_target, rep_index, len, state, pos_state) \ #define get_rep_price(price_target, rep_index, len, state, pos_state) \
do { \ do { \
get_pure_rep_price(price_target, rep_index, state, pos_state); \ get_pure_rep_price(price_target, rep_index, state, pos_state); \
price_target += length_get_price(coder->rep_match_len_encoder, \ price_target += length_get_price(coder->rep_len_encoder, \
(len) - MATCH_MIN_LEN, pos_state); \ (len) - MATCH_MIN_LEN, pos_state); \
} while (0) } while (0)
@ -80,7 +80,7 @@ do { \
+ align_prices[(pos) & ALIGN_MASK]; \ + align_prices[(pos) & ALIGN_MASK]; \
} \ } \
price_target += length_get_price( \ price_target += length_get_price( \
coder->len_encoder, (len) - MATCH_MIN_LEN, pos_state); \ coder->match_len_encoder, (len) - MATCH_MIN_LEN, pos_state); \
} while (0) } while (0)
@ -368,7 +368,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
+ literal_get_price( + literal_get_price(
literal_get_subcoder(coder->literal_coder, literal_get_subcoder(coder->literal_coder,
position, coder->previous_byte), position, coder->previous_byte),
!is_char_state(coder->state), match_byte, current_byte); !is_literal_state(coder->state), match_byte, current_byte);
make_as_char(coder->optimum[1]); make_as_char(coder->optimum[1]);
@ -424,7 +424,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
do { do {
const uint32_t cur_and_len_price = price const uint32_t cur_and_len_price = price
+ length_get_price( + length_get_price(
coder->rep_match_len_encoder, coder->rep_len_encoder,
rep_len - 2, pos_state); rep_len - 2, pos_state);
if (cur_and_len_price < coder->optimum[rep_len].price) { if (cur_and_len_price < coder->optimum[rep_len].price) {
@ -513,7 +513,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
state = coder->optimum[coder->optimum[cur].pos_prev_2].state; state = coder->optimum[coder->optimum[cur].pos_prev_2].state;
if (coder->optimum[cur].back_prev_2 < REP_DISTANCES) if (coder->optimum[cur].back_prev_2 < REP_DISTANCES)
update_rep(state); update_long_rep(state);
else else
update_match(state); update_match(state);
@ -521,7 +521,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
state = coder->optimum[pos_prev].state; state = coder->optimum[pos_prev].state;
} }
update_char(state); update_literal(state);
} else { } else {
state = coder->optimum[pos_prev].state; state = coder->optimum[pos_prev].state;
@ -531,17 +531,17 @@ lzma_get_optimum(lzma_coder *restrict coder,
if (is_short_rep(coder->optimum[cur])) if (is_short_rep(coder->optimum[cur]))
update_short_rep(state); update_short_rep(state);
else else
update_char(state); update_literal(state);
} else { } else {
uint32_t pos; uint32_t pos;
if (coder->optimum[cur].prev_1_is_char && coder->optimum[cur].prev_2) { if (coder->optimum[cur].prev_1_is_char && coder->optimum[cur].prev_2) {
pos_prev = coder->optimum[cur].pos_prev_2; pos_prev = coder->optimum[cur].pos_prev_2;
pos = coder->optimum[cur].back_prev_2; pos = coder->optimum[cur].back_prev_2;
update_rep(state); update_long_rep(state);
} else { } else {
pos = coder->optimum[cur].back_prev; pos = coder->optimum[cur].back_prev;
if (pos < REP_DISTANCES) if (pos < REP_DISTANCES)
update_rep(state); update_long_rep(state);
else else
update_match(state); update_match(state);
} }
@ -582,7 +582,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
+ literal_get_price( + literal_get_price(
literal_get_subcoder(coder->literal_coder, literal_get_subcoder(coder->literal_coder,
position, buf[-1]), position, buf[-1]),
!is_char_state(state), match_byte, current_byte); !is_literal_state(state), match_byte, current_byte);
bool next_is_char = false; bool next_is_char = false;
@ -638,7 +638,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
if (len_test_2 >= 2) { if (len_test_2 >= 2) {
uint32_t state_2 = state; uint32_t state_2 = state;
update_char(state_2); update_literal(state_2);
const uint32_t pos_state_next = (position + 1) & pos_mask; const uint32_t pos_state_next = (position + 1) & pos_mask;
const uint32_t next_rep_match_price = cur_and_1_price const uint32_t next_rep_match_price = cur_and_1_price
@ -689,7 +689,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
do { do {
const uint32_t cur_and_len_price = price const uint32_t cur_and_len_price = price
+ length_get_price(coder->rep_match_len_encoder, + length_get_price(coder->rep_len_encoder,
len_test - 2, pos_state); len_test - 2, pos_state);
if (cur_and_len_price < coder->optimum[cur + len_test].price) { if (cur_and_len_price < coder->optimum[cur + len_test].price) {
@ -717,12 +717,12 @@ lzma_get_optimum(lzma_coder *restrict coder,
if (len_test_2 >= 2) { if (len_test_2 >= 2) {
uint32_t state_2 = state; uint32_t state_2 = state;
update_rep(state_2); update_long_rep(state_2);
uint32_t pos_state_next = (position + len_test) & pos_mask; uint32_t pos_state_next = (position + len_test) & pos_mask;
const uint32_t cur_and_len_char_price = price const uint32_t cur_and_len_char_price = price
+ length_get_price(coder->rep_match_len_encoder, + length_get_price(coder->rep_len_encoder,
len_test - 2, pos_state) len_test - 2, pos_state)
+ bit_get_price_0(coder->is_match[state_2][pos_state_next]) + bit_get_price_0(coder->is_match[state_2][pos_state_next])
+ literal_get_price( + literal_get_price(
@ -730,7 +730,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
position + len_test, buf[len_test - 1]), position + len_test, buf[len_test - 1]),
true, *(buf + len_test - back_offset), buf[len_test]); true, *(buf + len_test - back_offset), buf[len_test]);
update_char(state_2); update_literal(state_2);
pos_state_next = (position + len_test + 1) & pos_mask; pos_state_next = (position + len_test + 1) & pos_mask;
@ -801,7 +801,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
len_to_pos_state][pos_slot] len_to_pos_state][pos_slot]
+ align_prices[cur_back & ALIGN_MASK]; + align_prices[cur_back & ALIGN_MASK];
cur_and_len_price += length_get_price(coder->len_encoder, cur_and_len_price += length_get_price(coder->match_len_encoder,
len_test - MATCH_MIN_LEN, pos_state); len_test - MATCH_MIN_LEN, pos_state);
if (cur_and_len_price < coder->optimum[cur + len_test].price) { if (cur_and_len_price < coder->optimum[cur + len_test].price) {
@ -843,7 +843,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
*(buf + len_test - back_offset), *(buf + len_test - back_offset),
buf[len_test]); buf[len_test]);
update_char(state_2); update_literal(state_2);
pos_state_next = (pos_state_next + 1) & pos_mask; pos_state_next = (pos_state_next + 1) & pos_mask;
const uint32_t next_rep_match_price const uint32_t next_rep_match_price

View File

@ -174,10 +174,11 @@ lzma_lzma_encoder_init(lzma_next_coder *next, lzma_allocator *allocator,
bittree_reset(next->coder->pos_align_encoder, ALIGN_BITS); bittree_reset(next->coder->pos_align_encoder, ALIGN_BITS);
// Length encoders // Length encoders
length_encoder_reset(&next->coder->len_encoder, 1U << options->pos_bits, length_encoder_reset(&next->coder->match_len_encoder,
1U << options->pos_bits,
options->fast_bytes + 1 - MATCH_MIN_LEN); options->fast_bytes + 1 - MATCH_MIN_LEN);
length_encoder_reset(&next->coder->rep_match_len_encoder, length_encoder_reset(&next->coder->rep_len_encoder,
1U << options->pos_bits, 1U << options->pos_bits,
next->coder->fast_bytes + 1 - MATCH_MIN_LEN); next->coder->fast_bytes + 1 - MATCH_MIN_LEN);

View File

@ -60,7 +60,7 @@ typedef struct {
typedef struct { typedef struct {
uint32_t state; lzma_lzma_state state;
bool prev_1_is_char; bool prev_1_is_char;
bool prev_2; bool prev_2;
@ -88,7 +88,7 @@ struct lzma_coder_s {
lzma_range_encoder rc; lzma_range_encoder rc;
// State // State
uint32_t state; lzma_lzma_state state;
uint8_t previous_byte; uint8_t previous_byte;
uint32_t rep_distances[REP_DISTANCES]; uint32_t rep_distances[REP_DISTANCES];
@ -117,8 +117,8 @@ struct lzma_coder_s {
probability pos_align_encoder[1 << ALIGN_BITS]; probability pos_align_encoder[1 << ALIGN_BITS];
// Length encoders // Length encoders
lzma_length_encoder len_encoder; lzma_length_encoder match_len_encoder;
lzma_length_encoder rep_match_len_encoder; lzma_length_encoder rep_len_encoder;
// Optimal // Optimal
lzma_optimal optimum[OPTS]; lzma_optimal optimum[OPTS];