Tests: Refactors existing filter flags tests.

Converts the existing filter flags tests into tuktests.
This commit is contained in:
Jia Tan 2022-12-29 23:33:33 +08:00 committed by Lasse Collin
parent 1bbefa9659
commit 6b44cead95
1 changed files with 483 additions and 224 deletions

View File

@ -3,7 +3,8 @@
/// \file test_filter_flags.c /// \file test_filter_flags.c
/// \brief Tests Filter Flags coders /// \brief Tests Filter Flags coders
// //
// Author: Lasse Collin // Authors: Jia Tan
// Lasse Collin
// //
// This file has been put into the public domain. // This file has been put into the public domain.
// You can do whatever you want with this file. // You can do whatever you want with this file.
@ -11,248 +12,506 @@
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
#include "tests.h" #include "tests.h"
// Including the internal header file for access to the
// LZMA_FILTER_RESERVED_START macro
#include "common/common.h"
static uint8_t buffer[4096]; // Used to create filters and easily to set id and options
static lzma_filter known_flags; #define INIT_FILTER(_id, _options) {\
static lzma_filter decoded_flags; .id = _id, \
static lzma_stream strm = LZMA_STREAM_INIT; .options = _options \
}
static bool #if defined(HAVE_ENCODERS)
encode(uint32_t known_size) // No tests are run without encoders, so init the global filters
// only when the encoders are enabled.
static lzma_filter lzma1_filter = INIT_FILTER(LZMA_FILTER_LZMA1, NULL);
static lzma_filter lzma2_filter = INIT_FILTER(LZMA_FILTER_LZMA2, NULL);
static lzma_filter delta_filter = INIT_FILTER(LZMA_FILTER_DELTA, NULL);
static lzma_filter bcj_filters_encoders[] = {
#ifdef HAVE_ENCODER_X86
INIT_FILTER(LZMA_FILTER_X86, NULL),
#endif
#ifdef HAVE_ENCODER_POWERPC
INIT_FILTER(LZMA_FILTER_POWERPC, NULL),
#endif
#ifdef HAVE_ENCODER_IA64
INIT_FILTER(LZMA_FILTER_IA64, NULL),
#endif
#ifdef HAVE_ENCODER_ARM
INIT_FILTER(LZMA_FILTER_ARM, NULL),
#endif
#ifdef HAVE_ENCODER_ARM64
INIT_FILTER(LZMA_FILTER_ARM64, NULL),
#endif
#ifdef HAVE_ENCODER_ARMTHUMB
INIT_FILTER(LZMA_FILTER_ARMTHUMB, NULL),
#endif
#ifdef HAVE_ENCODER_SPARC
INIT_FILTER(LZMA_FILTER_SPARC, NULL),
#endif
};
// HAVE_ENCODERS ifdef not termianted here because decoders are
// only used if encoders are, but encoders can still be used
// even if decoders are not.
#ifdef HAVE_DECODERS
static lzma_filter bcj_filters_decoders[] = {
#ifdef HAVE_DECODER_X86
INIT_FILTER(LZMA_FILTER_X86, NULL),
#endif
#ifdef HAVE_DECODER_POWERPC
INIT_FILTER(LZMA_FILTER_POWERPC, NULL),
#endif
#ifdef HAVE_DECODER_IA64
INIT_FILTER(LZMA_FILTER_IA64, NULL),
#endif
#ifdef HAVE_DECODER_ARM
INIT_FILTER(LZMA_FILTER_ARM, NULL),
#endif
#ifdef HAVE_DECODER_ARM64
INIT_FILTER(LZMA_FILTER_ARM64, NULL),
#endif
#ifdef HAVE_DECODER_ARMTHUMB
INIT_FILTER(LZMA_FILTER_ARMTHUMB, NULL),
#endif
#ifdef HAVE_DECODER_SPARC
INIT_FILTER(LZMA_FILTER_SPARC, NULL),
#endif
};
#endif
#endif
static void
test_lzma_filter_flags_size(void)
{ {
memcrap(buffer, sizeof(buffer)); #ifndef HAVE_ENCODERS
assert_skip("Encoder support disabled");
#else
// For each supported filter, test that the size can be calculated
// and that the size calculated is reasonable. A reasonable size
// must be greater than 0, but less than the maximum size for the
// block header.
uint32_t size = 0;
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA1)) {
assert_lzma_ret(lzma_filter_flags_size(&size,
&lzma1_filter), LZMA_PROG_ERROR);
}
uint32_t tmp; if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
if (lzma_filter_flags_size(&tmp, &known_flags) != LZMA_OK) assert_lzma_ret(lzma_filter_flags_size(&size,
return true; &lzma2_filter), LZMA_OK);
assert_true(size != 0 && size < LZMA_BLOCK_HEADER_SIZE_MAX);
}
if (tmp != known_size) for (uint32_t i = 0; i < ARRAY_SIZE(bcj_filters_encoders); i++) {
return true; assert_lzma_ret(lzma_filter_flags_size(&size,
&bcj_filters_encoders[i]), LZMA_OK);
assert_true(size != 0 && size < LZMA_BLOCK_HEADER_SIZE_MAX);
}
if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
assert_lzma_ret(lzma_filter_flags_size(&size,
&delta_filter), LZMA_OK);
assert_true(size != 0 && size < LZMA_BLOCK_HEADER_SIZE_MAX);
}
// Test invalid filter ids
lzma_filter bad_filter = INIT_FILTER(2, NULL);
assert_lzma_ret(lzma_filter_flags_size(&size, &bad_filter),
LZMA_OPTIONS_ERROR);
bad_filter.id = LZMA_VLI_MAX;
assert_lzma_ret(lzma_filter_flags_size(&size, &bad_filter),
LZMA_PROG_ERROR);
bad_filter.id = LZMA_FILTER_RESERVED_START;
assert_lzma_ret(lzma_filter_flags_size(&size, &bad_filter),
LZMA_PROG_ERROR);
#endif
}
// Helper function for test_lzma_filter_flags_encode.
// The should_encode parameter represents if the encoding operation
// is expected to fail.
// Avoid data -> encode -> decode -> compare to data.
// Instead create expected encoding and compare to result from
// lzma_filter_flags_encode.
// Filter flags for xz are encoded as:
// |Filter ID (VLI)|Size of Properties (VLI)|Filter Properties|
#if defined(HAVE_ENCODERS) && defined(HAVE_DECODERS)
static void
verify_filter_flags_encode(lzma_filter *filter, bool should_encode)
{
uint32_t size = 0;
// First calculate the size of filter flags to know how much
// memory to allocate to hold the filter flags encoded
assert_lzma_ret(lzma_filter_flags_size(&size, filter), LZMA_OK);
uint8_t *encoded_out = tuktest_malloc(size * sizeof(uint8_t));
size_t out_pos = 0; size_t out_pos = 0;
if (lzma_filter_flags_encode(&known_flags, if(!should_encode) {
buffer, &out_pos, known_size) != LZMA_OK) assert_false(lzma_filter_flags_encode(filter, encoded_out,
return true; &out_pos, size) == LZMA_OK);
return;
if (out_pos != known_size)
return true;
return false;
}
static bool
decode_ret(uint32_t known_size, lzma_ret expected_ret)
{
memcrap(&decoded_flags, sizeof(decoded_flags));
size_t pos = 0;
if (lzma_filter_flags_decode(&decoded_flags, NULL,
buffer, &pos, known_size) != expected_ret
|| pos != known_size)
return true;
return false;
}
static bool
decode(uint32_t known_size)
{
if (decode_ret(known_size, LZMA_OK))
return true;
if (known_flags.id != decoded_flags.id)
return true;
return false;
}
#if defined(HAVE_ENCODER_X86) && defined(HAVE_DECODER_X86)
static void
test_bcj(void)
{
// Test 1
known_flags.id = LZMA_FILTER_X86;
known_flags.options = NULL;
expect(!encode(2));
expect(!decode(2));
expect(decoded_flags.options == NULL);
// Test 2
lzma_options_bcj options;
options.start_offset = 0;
known_flags.options = &options;
expect(!encode(2));
expect(!decode(2));
expect(decoded_flags.options == NULL);
// Test 3
options.start_offset = 123456;
known_flags.options = &options;
expect(!encode(6));
expect(!decode(6));
expect(decoded_flags.options != NULL);
lzma_options_bcj *decoded = decoded_flags.options;
expect(decoded->start_offset == options.start_offset);
free(decoded);
}
#endif
#if defined(HAVE_ENCODER_DELTA) && defined(HAVE_DECODER_DELTA)
static void
test_delta(void)
{
// Test 1
known_flags.id = LZMA_FILTER_DELTA;
known_flags.options = NULL;
expect(encode(99));
// Test 2
lzma_options_delta options = {
.type = LZMA_DELTA_TYPE_BYTE,
.dist = 0
};
known_flags.options = &options;
expect(encode(99));
// Test 3
options.dist = LZMA_DELTA_DIST_MIN;
expect(!encode(3));
expect(!decode(3));
expect(((lzma_options_delta *)(decoded_flags.options))->dist
== options.dist);
free(decoded_flags.options);
// Test 4
options.dist = LZMA_DELTA_DIST_MAX;
expect(!encode(3));
expect(!decode(3));
expect(((lzma_options_delta *)(decoded_flags.options))->dist
== options.dist);
free(decoded_flags.options);
// Test 5
options.dist = LZMA_DELTA_DIST_MAX + 1;
expect(encode(99));
}
#endif
/*
#ifdef HAVE_FILTER_LZMA
static void
validate_lzma(void)
{
const lzma_options_lzma *known = known_flags.options;
const lzma_options_lzma *decoded = decoded_flags.options;
expect(known->dictionary_size <= decoded->dictionary_size);
if (known->dictionary_size == 1)
expect(decoded->dictionary_size == 1);
else
expect(known->dictionary_size + known->dictionary_size / 2
> decoded->dictionary_size);
expect(known->literal_context_bits == decoded->literal_context_bits);
expect(known->literal_pos_bits == decoded->literal_pos_bits);
expect(known->pos_bits == decoded->pos_bits);
}
static void
test_lzma(void)
{
// Test 1
known_flags.id = LZMA_FILTER_LZMA1;
known_flags.options = NULL;
expect(encode(99));
// Test 2
lzma_options_lzma options = {
.dictionary_size = 0,
.literal_context_bits = 0,
.literal_pos_bits = 0,
.pos_bits = 0,
.preset_dictionary = NULL,
.preset_dictionary_size = 0,
.mode = LZMA_MODE_INVALID,
.fast_bytes = 0,
.match_finder = LZMA_MF_INVALID,
.match_finder_cycles = 0,
};
// Test 3 (empty dictionary not allowed)
known_flags.options = &options;
expect(encode(99));
// Test 4 (brute-force test some valid dictionary sizes)
options.dictionary_size = LZMA_DICTIONARY_SIZE_MIN;
while (options.dictionary_size != LZMA_DICTIONARY_SIZE_MAX) {
if (++options.dictionary_size == 5000)
options.dictionary_size = LZMA_DICTIONARY_SIZE_MAX - 5;
expect(!encode(4));
expect(!decode(4));
validate_lzma();
free(decoded_flags.options);
} }
// Test 5 (too big dictionary size) // Next encode the filter flags for the provided filter
options.dictionary_size = LZMA_DICTIONARY_SIZE_MAX + 1; assert_lzma_ret(lzma_filter_flags_encode(filter, encoded_out,
expect(encode(99)); &out_pos, size), LZMA_OK);
assert_uint_eq(size, out_pos);
// Next decode the vli for the filter ID and verify it matches
// the expected filter id
size_t filter_id_vli_size = 0;
lzma_vli filter_id = 0;
assert_lzma_ret(lzma_vli_decode(&filter_id, NULL, encoded_out,
&filter_id_vli_size, size), LZMA_OK);
assert_uint_eq(filter->id, filter_id);
// Test 6 (brute-force test lc/lp/pb) // Next decode the size of properites and ensure it equals
options.dictionary_size = LZMA_DICTIONARY_SIZE_MIN; // the expected size
for (uint32_t lc = LZMA_LITERAL_CONTEXT_BITS_MIN; // Expected size should be:
lc <= LZMA_LITERAL_CONTEXT_BITS_MAX; ++lc) { // total filter flag length - size of filter id VLI + size of
for (uint32_t lp = LZMA_LITERAL_POS_BITS_MIN; // property size VLI
lp <= LZMA_LITERAL_POS_BITS_MAX; ++lp) { // Not verifying the contents of Filter Properties since
for (uint32_t pb = LZMA_POS_BITS_MIN; // that belongs in a different test
pb <= LZMA_POS_BITS_MAX; ++pb) { size_t size_of_properties_vli_size = 0;
if (lc + lp > LZMA_LITERAL_BITS_MAX) lzma_vli size_of_properties = 0;
continue; assert_lzma_ret(lzma_vli_decode(&size_of_properties, NULL,
encoded_out + filter_id_vli_size,
&size_of_properties_vli_size, size), LZMA_OK);
assert_uint_eq(size - (size_of_properties_vli_size +
filter_id_vli_size), size_of_properties);
}
#endif
options.literal_context_bits = lc;
options.literal_pos_bits = lp;
options.pos_bits = pb;
expect(!encode(4)); static void
expect(!decode(4)); test_lzma_filter_flags_encode(void)
validate_lzma(); {
#if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS)
assert_skip("Encoder or decoder support disabled");
#else
// No test for LZMA1 since the xz format does not support LZMA1
// and so the flags cannot be encoded for that filter
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
// Test with NULL options that should fail
lzma_options_lzma *options = lzma2_filter.options;
lzma2_filter.options = NULL;
verify_filter_flags_encode(&lzma2_filter, false);
// Place options back in the filter, and test should pass
lzma2_filter.options = options;
verify_filter_flags_encode(&lzma2_filter, true);
}
free(decoded_flags.options); lzma_options_bcj bcj_options = {
} .start_offset = 200
};
for (uint32_t i = 0; i < ARRAY_SIZE(bcj_filters_encoders); i++) {
// NULL options should pass for bcj filters
verify_filter_flags_encode(&bcj_filters_encoders[i], true);
lzma_filter bcj_with_options = INIT_FILTER(
bcj_filters_encoders[i].id, &bcj_options);
verify_filter_flags_encode(&bcj_with_options, true);
}
if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
lzma_options_delta delta_ops_below_min = {
.type = LZMA_DELTA_TYPE_BYTE,
.dist = LZMA_DELTA_DIST_MIN - 1
};
lzma_options_delta delta_ops_above_max = {
.type = LZMA_DELTA_TYPE_BYTE,
.dist = LZMA_DELTA_DIST_MAX + 1
};
verify_filter_flags_encode(&delta_filter, true);
lzma_filter delta_filter_bad_options = INIT_FILTER(
LZMA_FILTER_DELTA, &delta_ops_below_min);
// Next test error case using minimum - 1 delta distance
verify_filter_flags_encode(&delta_filter_bad_options, false);
// Next test error case using maximum + 1 delta distance
delta_filter_bad_options.options = &delta_ops_above_max;
verify_filter_flags_encode(&delta_filter_bad_options, false);
// Next test null case
delta_filter_bad_options.options = NULL;
verify_filter_flags_encode(&delta_filter_bad_options, false);
}
// Test expected failing cases
lzma_filter bad_filter = INIT_FILTER(LZMA_FILTER_RESERVED_START,
NULL);
size_t out_pos = 0;
size_t out_size = LZMA_BLOCK_HEADER_SIZE_MAX;
uint8_t out[LZMA_BLOCK_HEADER_SIZE_MAX];
// Filter id outside of valid range
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos,
out_size), LZMA_PROG_ERROR);
out_pos = 0;
bad_filter.id = LZMA_VLI_MAX + 1;
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos,
out_size), LZMA_PROG_ERROR);
out_pos = 0;
// Invalid filter id
bad_filter.id = 2;
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos,
out_size), LZMA_OPTIONS_ERROR);
out_pos = 0;
// Out size too small
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
uint32_t bad_size = 0;
// First test with 0 output size
assert_lzma_ret(lzma_filter_flags_encode(
&lzma2_filter, out, &out_pos, 0),
LZMA_PROG_ERROR);
// Next calculate the size needed to encode and
// use less than that
assert_lzma_ret(lzma_filter_flags_size(&bad_size,
&lzma2_filter), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_encode(
&lzma2_filter, out, &out_pos,
bad_size - 1), LZMA_PROG_ERROR);
out_pos = 0;
}
// Invalid options
if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
bad_filter.id = LZMA_FILTER_DELTA;
// First test with NULL options
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out,
&out_pos, out_size), LZMA_PROG_ERROR);
out_pos = 0;
// Next test with invalid options
lzma_options_delta bad_options = {
.dist = LZMA_DELTA_DIST_MAX + 1,
.type = LZMA_DELTA_TYPE_BYTE
};
bad_filter.options = &bad_options;
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out,
&out_pos, out_size), LZMA_PROG_ERROR);
}
#endif
}
// Helper function for test_lzma_filter_flags_decode.
// Encodes the filter_in without using lzma_filter_flags_encode.
// Leaves the specific assertions of filter_out options to the caller
// because it is agnostic to the type of options used in the call
#if defined(HAVE_ENCODERS) && defined(HAVE_DECODERS)
static void
verify_filter_flags_decode(lzma_filter *filter_in, lzma_filter *filter_out)
{
uint32_t total_size = 0;
assert_lzma_ret(lzma_filter_flags_size(&total_size, filter_in),
LZMA_OK);
uint8_t *filter_flag_buffer = tuktest_malloc(total_size);
uint32_t properties_size = 0;
size_t out_pos = 0, in_pos = 0;
assert_lzma_ret(lzma_properties_size(&properties_size, filter_in),
LZMA_OK);
assert_lzma_ret(lzma_vli_encode(filter_in->id, NULL,
filter_flag_buffer, &out_pos, total_size), LZMA_OK);
assert_lzma_ret(lzma_vli_encode(properties_size, NULL,
filter_flag_buffer, &out_pos, total_size),
LZMA_OK);
assert_lzma_ret(lzma_properties_encode(filter_in,
filter_flag_buffer + out_pos), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_decode(filter_out, NULL,
filter_flag_buffer, &in_pos, total_size),
LZMA_OK);
assert_uint_eq(filter_in->id, filter_out->id);
}
#endif
static void
test_lzma_filter_flags_decode(void)
{
#if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS)
assert_skip("Encoder or decoder support disabled");
#else
// For each filter, only run the decoder test if both the encoder
// and decoder is enabled. This is because verify_filter_flags_decode
// uses lzma_filter_flags_size, which requires the encoder.
if (lzma_filter_decoder_is_supported(LZMA_FILTER_LZMA2) &&
lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
lzma_filter lzma2_decoded = INIT_FILTER(LZMA_FILTER_LZMA2,
NULL);
verify_filter_flags_decode(&lzma2_filter, &lzma2_decoded);
lzma_options_lzma *expected = lzma2_filter.options;
lzma_options_lzma *decoded = lzma2_decoded.options;
// Only the dictionary size is encoded and decoded
// so only compare those
assert_uint_eq(decoded->dict_size, expected->dict_size);
// The decoded options must be freed by the caller
free(decoded);
}
for (uint32_t i = 0; i < ARRAY_SIZE(bcj_filters_decoders); i++) {
if (lzma_filter_encoder_is_supported(
bcj_filters_decoders[i].id)) {
lzma_filter bcj_decoded = INIT_FILTER(
bcj_filters_decoders[i].id, NULL);
lzma_filter bcj_encoded = INIT_FILTER(
bcj_filters_decoders[i].id, NULL);
// First test without options
verify_filter_flags_decode(&bcj_encoded,
&bcj_decoded);
assert_true(bcj_decoded.options == NULL);
// Next test with offset
lzma_options_bcj options = {
.start_offset = 200
};
bcj_encoded.options = &options;
verify_filter_flags_decode(&bcj_encoded,
&bcj_decoded);
lzma_options_bcj *decoded_ops = bcj_decoded.options;
assert_uint_eq(decoded_ops->start_offset,
options.start_offset);
free(decoded_ops);
} }
} }
}
#endif
*/
int if (lzma_filter_decoder_is_supported(LZMA_FILTER_DELTA) &&
main(void) lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
lzma_filter delta_decoded = INIT_FILTER(LZMA_FILTER_DELTA,
NULL);
verify_filter_flags_decode(&delta_filter, &delta_decoded);
lzma_options_delta *expected = delta_filter.options;
lzma_options_delta *decoded = delta_decoded.options;
assert_uint_eq(expected->dist, decoded->dist);
assert_uint_eq(expected->type, decoded->type);
free(decoded);
}
// Test expected failing cases
uint8_t bad_encoded_filter[LZMA_BLOCK_HEADER_SIZE_MAX];
lzma_filter bad_filter;
// Filter outside of valid range
lzma_vli bad_filter_id = LZMA_FILTER_RESERVED_START;
size_t bad_encoded_out_pos = 0;
size_t in_pos = 0;
assert_lzma_ret(lzma_vli_encode(bad_filter_id, NULL,
bad_encoded_filter, &bad_encoded_out_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_decode(&bad_filter, NULL,
bad_encoded_filter, &in_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_DATA_ERROR);
bad_encoded_out_pos = 0;
in_pos = 0;
// Invalid filter Id
bad_filter_id = 2;
bad_encoded_out_pos = 0;
in_pos = 0;
assert_lzma_ret(lzma_vli_encode(bad_filter_id, NULL,
bad_encoded_filter, &bad_encoded_out_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK);
// Next encode propery size of 0
assert_lzma_ret(lzma_vli_encode(0, NULL,
bad_encoded_filter, &bad_encoded_out_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK);
// Decode should fail on bad filter id
assert_lzma_ret(lzma_filter_flags_decode(&bad_filter, NULL,
bad_encoded_filter, &in_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OPTIONS_ERROR);
bad_encoded_out_pos = 0;
in_pos = 0;
// Outsize too small
// Encode the lzma2 filter normally, but then set
// the out size when decoding as too small
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2) &&
lzma_filter_decoder_is_supported(LZMA_FILTER_LZMA2)) {
uint32_t filter_flag_size = 0;
assert_lzma_ret(lzma_filter_flags_size(&filter_flag_size,
&lzma2_filter), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_encode(&lzma2_filter,
bad_encoded_filter, &bad_encoded_out_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_decode(&bad_filter, NULL,
bad_encoded_filter, &in_pos,
filter_flag_size - 1), LZMA_DATA_ERROR);
}
#endif
}
extern int
main(int argc, char **argv)
{ {
#if defined(HAVE_ENCODER_X86) && defined(HAVE_DECODER_X86) tuktest_start(argc, argv);
test_bcj();
#endif
#if defined(HAVE_ENCODER_DELTA) && defined(HAVE_DECODER_DELTA)
test_delta();
#endif
// #ifdef HAVE_FILTER_LZMA
// test_lzma();
// #endif
lzma_end(&strm); #ifdef HAVE_ENCODERS
// Only init filter options if encoder is supported because decoder
// tests requires encoder support, so the decoder tests will only
// run if for a given filter both the encoder and decoder are enabled.
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA1)) {
lzma_options_lzma *options = tuktest_malloc(
sizeof(lzma_options_lzma));
lzma_lzma_preset(options, LZMA_PRESET_DEFAULT);
lzma1_filter.options = options;
}
return 0; if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
lzma_options_lzma *options = tuktest_malloc(
sizeof(lzma_options_lzma));
lzma_lzma_preset(options, LZMA_PRESET_DEFAULT);
lzma2_filter.options = options;
}
if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
lzma_options_delta *options = tuktest_malloc(
sizeof(lzma_options_delta));
options->dist = LZMA_DELTA_DIST_MIN;
options->type = LZMA_DELTA_TYPE_BYTE;
delta_filter.options = options;
}
#endif
tuktest_run(test_lzma_filter_flags_size);
tuktest_run(test_lzma_filter_flags_encode);
tuktest_run(test_lzma_filter_flags_decode);
return tuktest_end();
} }