liblzma: Rename a few variables and constants.

This has no semantic changes. I find the new names slightly
more logical and they match the names that are already used
in XZ Embedded.

The name fastpos wasn't changed (not worth the hassle).
This commit is contained in:
Lasse Collin 2010-10-26 10:36:41 +03:00
parent 7c427ec38d
commit 974ebe6349
8 changed files with 181 additions and 184 deletions

View File

@ -14,15 +14,15 @@
#ifndef LZMA_FASTPOS_H
#define LZMA_FASTPOS_H
// LZMA encodes match distances (positions) by storing the highest two
// bits using a six-bit value [0, 63], and then the missing lower bits.
// Dictionary size is also stored using this encoding in the new .lzma
// LZMA encodes match distances by storing the highest two bits using
// a six-bit value [0, 63], and then the missing lower bits.
// Dictionary size is also stored using this encoding in the .xz
// file format header.
//
// fastpos.h provides a way to quickly find out the correct six-bit
// values. The following table gives some examples of this encoding:
//
// pos return
// dist return
// 0 0
// 1 1
// 2 2
@ -48,10 +48,10 @@
// Provided functions or macros
// ----------------------------
//
// get_pos_slot(pos) is the basic version. get_pos_slot_2(pos)
// assumes that pos >= FULL_DISTANCES, thus the result is at least
// FULL_DISTANCES_BITS * 2. Using get_pos_slot(pos) instead of
// get_pos_slot_2(pos) would give the same result, but get_pos_slot_2(pos)
// get_dist_slot(dist) is the basic version. get_dist_slot_2(dist)
// assumes that dist >= FULL_DISTANCES, thus the result is at least
// FULL_DISTANCES_BITS * 2. Using get_dist_slot(dist) instead of
// get_dist_slot_2(dist) would give the same result, but get_dist_slot_2(dist)
// should be tiny bit faster due to the assumption being made.
//
//
@ -76,13 +76,14 @@
// slightly faster, but sometimes it is a lot slower.
#ifdef HAVE_SMALL
# define get_pos_slot(pos) ((pos) <= 4 ? (pos) : get_pos_slot_2(pos))
# define get_dist_slot(dist) \
((dist) <= 4 ? (dist) : get_dist_slot_2(dist))
static inline uint32_t
get_pos_slot_2(uint32_t pos)
get_dist_slot_2(uint32_t dist)
{
const uint32_t i = bsr32(pos);
return (i + i) + ((pos >> (i - 1)) & 1);
const uint32_t i = bsr32(dist);
return (i + i) + ((dist >> (i - 1)) & 1);
}
@ -99,39 +100,39 @@ extern const uint8_t lzma_fastpos[1 << FASTPOS_BITS];
#define fastpos_limit(extra, n) \
(UINT32_C(1) << (FASTPOS_BITS + fastpos_shift(extra, n)))
#define fastpos_result(pos, extra, n) \
lzma_fastpos[(pos) >> fastpos_shift(extra, n)] \
#define fastpos_result(dist, extra, n) \
lzma_fastpos[(dist) >> fastpos_shift(extra, n)] \
+ 2 * fastpos_shift(extra, n)
static inline uint32_t
get_pos_slot(uint32_t pos)
get_dist_slot(uint32_t dist)
{
// If it is small enough, we can pick the result directly from
// the precalculated table.
if (pos < fastpos_limit(0, 0))
return lzma_fastpos[pos];
if (dist < fastpos_limit(0, 0))
return lzma_fastpos[dist];
if (pos < fastpos_limit(0, 1))
return fastpos_result(pos, 0, 1);
if (dist < fastpos_limit(0, 1))
return fastpos_result(dist, 0, 1);
return fastpos_result(pos, 0, 2);
return fastpos_result(dist, 0, 2);
}
#ifdef FULL_DISTANCES_BITS
static inline uint32_t
get_pos_slot_2(uint32_t pos)
get_dist_slot_2(uint32_t dist)
{
assert(pos >= FULL_DISTANCES);
assert(dist >= FULL_DISTANCES);
if (pos < fastpos_limit(FULL_DISTANCES_BITS - 1, 0))
return fastpos_result(pos, FULL_DISTANCES_BITS - 1, 0);
if (dist < fastpos_limit(FULL_DISTANCES_BITS - 1, 0))
return fastpos_result(dist, FULL_DISTANCES_BITS - 1, 0);
if (pos < fastpos_limit(FULL_DISTANCES_BITS - 1, 1))
return fastpos_result(pos, FULL_DISTANCES_BITS - 1, 1);
if (dist < fastpos_limit(FULL_DISTANCES_BITS - 1, 1))
return fastpos_result(dist, FULL_DISTANCES_BITS - 1, 1);
return fastpos_result(pos, FULL_DISTANCES_BITS - 1, 2);
return fastpos_result(dist, FULL_DISTANCES_BITS - 1, 2);
}
#endif

View File

@ -387,7 +387,7 @@ lzma_lzma2_props_encode(const void *options, uint8_t *out)
if (d == UINT32_MAX)
out[0] = 40;
else
out[0] = get_pos_slot(d + 1) - 24;
out[0] = get_dist_slot(d + 1) - 24;
return LZMA_OK;
}

View File

@ -171,53 +171,54 @@ literal_init(probability (*probs)[LITERAL_CODER_SIZE],
// Match distance //
////////////////////
// Different set of probabilities is used for match distances that have very
// Different sets of probabilities are used for match distances that have very
// short match length: Lengths of 2, 3, and 4 bytes have a separate set of
// probabilities for each length. The matches with longer length use a shared
// set of probabilities.
#define LEN_TO_POS_STATES 4
#define DIST_STATES 4
// Macro to get the index of the appropriate probability array.
#define get_len_to_pos_state(len) \
((len) < LEN_TO_POS_STATES + MATCH_LEN_MIN \
#define get_dist_state(len) \
((len) < DIST_STATES + MATCH_LEN_MIN \
? (len) - MATCH_LEN_MIN \
: LEN_TO_POS_STATES - 1)
: DIST_STATES - 1)
// The highest two bits of a match distance (pos slot) are encoded using six
// bits. See fastpos.h for more explanation.
#define POS_SLOT_BITS 6
#define POS_SLOTS (1 << POS_SLOT_BITS)
// The highest two bits of a match distance (distance slot) are encoded
// using six bits. See fastpos.h for more explanation.
#define DIST_SLOT_BITS 6
#define DIST_SLOTS (1 << DIST_SLOT_BITS)
// Match distances up to 127 are fully encoded using probabilities. Since
// the highest two bits (pos slot) are always encoded using six bits, the
// distances 0-3 don't need any additional bits to encode, since the pos
// slot itself is the same as the actual distance. START_POS_MODEL_INDEX
// indicates the first pos slot where at least one additional bit is needed.
#define START_POS_MODEL_INDEX 4
// the highest two bits (distance slot) are always encoded using six bits,
// the distances 0-3 don't need any additional bits to encode, since the
// distance slot itself is the same as the actual distance. DIST_MODEL_START
// indicates the first distance slot where at least one additional bit is
// needed.
#define DIST_MODEL_START 4
// Match distances greater than 127 are encoded in three pieces:
// - pos slot: the highest two bits
// - distance slot: the highest two bits
// - direct bits: 2-26 bits below the highest two bits
// - alignment bits: four lowest bits
//
// Direct bits don't use any probabilities.
//
// The pos slot value of 14 is for distances 128-191 (see the table in
// The distance slot value of 14 is for distances 128-191 (see the table in
// fastpos.h to understand why).
#define END_POS_MODEL_INDEX 14
#define DIST_MODEL_END 14
// Pos slots that indicate a distance <= 127.
#define FULL_DISTANCES_BITS (END_POS_MODEL_INDEX / 2)
// Distance slots that indicate a distance <= 127.
#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)
// For match distances greater than 127, only the highest two bits and the
// lowest four bits (alignment) is encoded using probabilities.
#define ALIGN_BITS 4
#define ALIGN_TABLE_SIZE (1 << ALIGN_BITS)
#define ALIGN_MASK (ALIGN_TABLE_SIZE - 1)
#define ALIGN_SIZE (1 << ALIGN_BITS)
#define ALIGN_MASK (ALIGN_SIZE - 1)
// LZMA remembers the four most recent match distances. Reusing these distances
// tends to take less space than re-encoding the actual distance value.
#define REP_DISTANCES 4
#define REPS 4
#endif

View File

@ -193,15 +193,15 @@ struct lzma_coder_s {
/// Probability tree for the highest two bits of the match distance.
/// There is a separate probability tree for match lengths of
/// 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
probability pos_slot[LEN_TO_POS_STATES][POS_SLOTS];
probability dist_slot[DIST_STATES][DIST_SLOTS];
/// Probability trees for additional bits for match distance when the
/// distance is in the range [4, 127].
probability pos_special[FULL_DISTANCES - END_POS_MODEL_INDEX];
probability pos_special[FULL_DISTANCES - DIST_MODEL_END];
/// Probability tree for the lowest four bits of a match distance
/// that is equal to or greater than 128.
probability pos_align[ALIGN_TABLE_SIZE];
probability pos_align[ALIGN_SIZE];
/// Length of a normal match
lzma_length_decoder match_len_decoder;
@ -245,8 +245,8 @@ struct lzma_coder_s {
SEQ_LITERAL_WRITE,
SEQ_IS_REP,
seq_len(SEQ_MATCH_LEN),
seq_6(SEQ_POS_SLOT),
SEQ_POS_MODEL,
seq_6(SEQ_DIST_SLOT),
SEQ_DIST_MODEL,
SEQ_DIRECT,
seq_4(SEQ_ALIGN),
SEQ_EOPM,
@ -502,28 +502,28 @@ lzma_decode(lzma_coder *restrict coder, lzma_dict *restrict dictptr,
// Prepare to decode the highest two bits of the
// match distance.
probs = coder->pos_slot[get_len_to_pos_state(len)];
probs = coder->dist_slot[get_dist_state(len)];
symbol = 1;
#ifdef HAVE_SMALL
case SEQ_POS_SLOT:
case SEQ_DIST_SLOT:
do {
rc_bit(probs[symbol], , , SEQ_POS_SLOT);
} while (symbol < POS_SLOTS);
rc_bit(probs[symbol], , , SEQ_DIST_SLOT);
} while (symbol < DIST_SLOTS);
#else
rc_bit_case(probs[symbol], , , SEQ_POS_SLOT0);
rc_bit_case(probs[symbol], , , SEQ_POS_SLOT1);
rc_bit_case(probs[symbol], , , SEQ_POS_SLOT2);
rc_bit_case(probs[symbol], , , SEQ_POS_SLOT3);
rc_bit_case(probs[symbol], , , SEQ_POS_SLOT4);
rc_bit_case(probs[symbol], , , SEQ_POS_SLOT5);
rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT0);
rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT1);
rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT2);
rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT3);
rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT4);
rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT5);
#endif
// Get rid of the highest bit that was needed for
// indexing of the probability array.
symbol -= POS_SLOTS;
symbol -= DIST_SLOTS;
assert(symbol <= 63);
if (symbol < START_POS_MODEL_INDEX) {
if (symbol < DIST_MODEL_START) {
// Match distances [0, 3] have only two bits.
rep0 = symbol;
} else {
@ -533,7 +533,7 @@ lzma_decode(lzma_coder *restrict coder, lzma_dict *restrict dictptr,
assert(limit >= 1 && limit <= 30);
rep0 = 2 + (symbol & 1);
if (symbol < END_POS_MODEL_INDEX) {
if (symbol < DIST_MODEL_END) {
// Prepare to decode the low bits for
// a distance of [4, 127].
assert(limit <= 5);
@ -553,12 +553,12 @@ lzma_decode(lzma_coder *restrict coder, lzma_dict *restrict dictptr,
- symbol - 1;
symbol = 1;
offset = 0;
case SEQ_POS_MODEL:
case SEQ_DIST_MODEL:
#ifdef HAVE_SMALL
do {
rc_bit(probs[symbol], ,
rep0 += 1 << offset,
SEQ_POS_MODEL);
SEQ_DIST_MODEL);
} while (++offset < limit);
#else
switch (limit) {
@ -566,25 +566,25 @@ lzma_decode(lzma_coder *restrict coder, lzma_dict *restrict dictptr,
assert(offset == 0);
rc_bit(probs[symbol], ,
rep0 += 1,
SEQ_POS_MODEL);
SEQ_DIST_MODEL);
++offset;
--limit;
case 4:
rc_bit(probs[symbol], ,
rep0 += 1 << offset,
SEQ_POS_MODEL);
SEQ_DIST_MODEL);
++offset;
--limit;
case 3:
rc_bit(probs[symbol], ,
rep0 += 1 << offset,
SEQ_POS_MODEL);
SEQ_DIST_MODEL);
++offset;
--limit;
case 2:
rc_bit(probs[symbol], ,
rep0 += 1 << offset,
SEQ_POS_MODEL);
SEQ_DIST_MODEL);
++offset;
--limit;
case 1:
@ -596,7 +596,7 @@ lzma_decode(lzma_coder *restrict coder, lzma_dict *restrict dictptr,
// "symbol".
rc_bit_last(probs[symbol], ,
rep0 += 1 << offset,
SEQ_POS_MODEL);
SEQ_DIST_MODEL);
}
#endif
} else {
@ -637,7 +637,7 @@ lzma_decode(lzma_coder *restrict coder, lzma_dict *restrict dictptr,
rc_bit(coder->pos_align[symbol], ,
rep0 += 4, SEQ_ALIGN2);
case SEQ_ALIGN3:
// Like in SEQ_POS_MODEL, we don't
// Like in SEQ_DIST_MODEL, we don't
// need "symbol" for anything else
// than indexing the probability array.
rc_bit_last(coder->pos_align[symbol], ,
@ -891,10 +891,10 @@ lzma_decoder_reset(lzma_coder *coder, const void *opt)
bit_reset(coder->is_rep2[i]);
}
for (uint32_t i = 0; i < LEN_TO_POS_STATES; ++i)
bittree_reset(coder->pos_slot[i], POS_SLOT_BITS);
for (uint32_t i = 0; i < DIST_STATES; ++i)
bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
for (uint32_t i = 0; i < FULL_DISTANCES - END_POS_MODEL_INDEX; ++i)
for (uint32_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
bit_reset(coder->pos_special[i]);
bittree_reset(coder->pos_align, ALIGN_BITS);

View File

@ -148,28 +148,28 @@ match(lzma_coder *coder, const uint32_t pos_state,
length(&coder->rc, &coder->match_len_encoder, pos_state, len,
coder->fast_mode);
const uint32_t pos_slot = get_pos_slot(distance);
const uint32_t len_to_pos_state = get_len_to_pos_state(len);
rc_bittree(&coder->rc, coder->pos_slot[len_to_pos_state],
POS_SLOT_BITS, pos_slot);
const uint32_t dist_slot = get_dist_slot(distance);
const uint32_t dist_state = get_dist_state(len);
rc_bittree(&coder->rc, coder->dist_slot[dist_state],
DIST_SLOT_BITS, dist_slot);
if (pos_slot >= START_POS_MODEL_INDEX) {
const uint32_t footer_bits = (pos_slot >> 1) - 1;
const uint32_t base = (2 | (pos_slot & 1)) << footer_bits;
const uint32_t pos_reduced = distance - base;
if (dist_slot >= DIST_MODEL_START) {
const uint32_t footer_bits = (dist_slot >> 1) - 1;
const uint32_t base = (2 | (dist_slot & 1)) << footer_bits;
const uint32_t dist_reduced = distance - base;
if (pos_slot < END_POS_MODEL_INDEX) {
// Careful here: base - pos_slot - 1 can be -1, but
if (dist_slot < DIST_MODEL_END) {
// Careful here: base - dist_slot - 1 can be -1, but
// rc_bittree_reverse starts at probs[1], not probs[0].
rc_bittree_reverse(&coder->rc,
coder->pos_special + base - pos_slot - 1,
footer_bits, pos_reduced);
coder->dist_special + base - dist_slot - 1,
footer_bits, dist_reduced);
} else {
rc_direct(&coder->rc, pos_reduced >> ALIGN_BITS,
rc_direct(&coder->rc, dist_reduced >> ALIGN_BITS,
footer_bits - ALIGN_BITS);
rc_bittree_reverse(
&coder->rc, coder->pos_align,
ALIGN_BITS, pos_reduced & ALIGN_MASK);
&coder->rc, coder->dist_align,
ALIGN_BITS, dist_reduced & ALIGN_MASK);
++coder->align_price_count;
}
}
@ -247,7 +247,7 @@ encode_symbol(lzma_coder *coder, lzma_mf *mf,
rc_bit(&coder->rc,
&coder->is_match[coder->state][pos_state], 1);
if (back < REP_DISTANCES) {
if (back < REPS) {
// It's a repeated match i.e. the same distance
// has been used earlier.
rc_bit(&coder->rc, &coder->is_rep[coder->state], 1);
@ -255,7 +255,7 @@ encode_symbol(lzma_coder *coder, lzma_mf *mf,
} else {
// Normal match
rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
match(coder, pos_state, back - REP_DISTANCES, len);
match(coder, pos_state, back - REPS, len);
}
}
@ -353,9 +353,9 @@ lzma_lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf,
// Get optimal match (repeat position and length).
// Value ranges for pos:
// - [0, REP_DISTANCES): repeated match
// - [REP_DISTANCES, UINT32_MAX):
// match at (pos - REP_DISTANCES)
// - [0, REPS): repeated match
// - [REPS, UINT32_MAX):
// match at (pos - REPS)
// - UINT32_MAX: not a match but a literal
// Value ranges for len:
// - [MATCH_LEN_MIN, MATCH_LEN_MAX]
@ -487,7 +487,7 @@ lzma_lzma_encoder_reset(lzma_coder *coder, const lzma_options_lzma *options)
// State
coder->state = STATE_LIT_LIT;
for (size_t i = 0; i < REP_DISTANCES; ++i)
for (size_t i = 0; i < REPS; ++i)
coder->reps[i] = 0;
literal_init(coder->literal, options->lc, options->lp);
@ -505,14 +505,14 @@ lzma_lzma_encoder_reset(lzma_coder *coder, const lzma_options_lzma *options)
bit_reset(coder->is_rep2[i]);
}
for (size_t i = 0; i < FULL_DISTANCES - END_POS_MODEL_INDEX; ++i)
bit_reset(coder->pos_special[i]);
for (size_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
bit_reset(coder->dist_special[i]);
// Bit tree encoders
for (size_t i = 0; i < LEN_TO_POS_STATES; ++i)
bittree_reset(coder->pos_slot[i], POS_SLOT_BITS);
for (size_t i = 0; i < DIST_STATES; ++i)
bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
bittree_reset(coder->pos_align, ALIGN_BITS);
bittree_reset(coder->dist_align, ALIGN_BITS);
// Length encoders
length_encoder_reset(&coder->match_len_encoder,

View File

@ -46,7 +46,7 @@ lzma_lzma_optimum_fast(lzma_coder *restrict coder, lzma_mf *restrict mf,
uint32_t rep_len = 0;
uint32_t rep_index = 0;
for (uint32_t i = 0; i < REP_DISTANCES; ++i) {
for (uint32_t i = 0; i < REPS; ++i) {
// Pointer to the beginning of the match candidate
const uint8_t *const buf_back = buf - coder->reps[i] - 1;
@ -79,8 +79,7 @@ lzma_lzma_optimum_fast(lzma_coder *restrict coder, lzma_mf *restrict mf,
// We didn't find a long enough repeated match. Encode it as a normal
// match if the match length is at least nice_len.
if (len_main >= nice_len) {
*back_res = coder->matches[matches_count - 1].dist
+ REP_DISTANCES;
*back_res = coder->matches[matches_count - 1].dist + REPS;
*len_res = len_main;
mf_skip(mf, len_main - 1);
return;
@ -155,7 +154,7 @@ lzma_lzma_optimum_fast(lzma_coder *restrict coder, lzma_mf *restrict mf,
const uint32_t limit = len_main - 1;
for (uint32_t i = 0; i < REP_DISTANCES; ++i) {
for (uint32_t i = 0; i < REPS; ++i) {
const uint8_t *const buf_back = buf - coder->reps[i] - 1;
if (not_equal_16(buf, buf_back))
@ -172,7 +171,7 @@ lzma_lzma_optimum_fast(lzma_coder *restrict coder, lzma_mf *restrict mf,
}
}
*back_res = back_main + REP_DISTANCES;
*back_res = back_main + REPS;
*len_res = len_main;
mf_skip(mf, len_main - 2);
return;

View File

@ -108,18 +108,18 @@ get_rep_price(const lzma_coder *const coder, const uint32_t rep_index,
static inline uint32_t
get_pos_len_price(const lzma_coder *const coder, const uint32_t pos,
get_dist_len_price(const lzma_coder *const coder, const uint32_t dist,
const uint32_t len, const uint32_t pos_state)
{
const uint32_t len_to_pos_state = get_len_to_pos_state(len);
const uint32_t dist_state = get_dist_state(len);
uint32_t price;
if (pos < FULL_DISTANCES) {
price = coder->distances_prices[len_to_pos_state][pos];
if (dist < FULL_DISTANCES) {
price = coder->dist_prices[dist_state][dist];
} else {
const uint32_t pos_slot = get_pos_slot_2(pos);
price = coder->pos_slot_prices[len_to_pos_state][pos_slot]
+ coder->align_prices[pos & ALIGN_MASK];
const uint32_t dist_slot = get_dist_slot_2(dist);
price = coder->dist_slot_prices[dist_state][dist_slot]
+ coder->align_prices[dist & ALIGN_MASK];
}
price += get_len_price(&coder->match_len_encoder, len, pos_state);
@ -129,55 +129,53 @@ get_pos_len_price(const lzma_coder *const coder, const uint32_t pos,
static void
fill_distances_prices(lzma_coder *coder)
fill_dist_prices(lzma_coder *coder)
{
for (uint32_t len_to_pos_state = 0;
len_to_pos_state < LEN_TO_POS_STATES;
++len_to_pos_state) {
for (uint32_t dist_state = 0; dist_state < DIST_STATES; ++dist_state) {
uint32_t *const pos_slot_prices
= coder->pos_slot_prices[len_to_pos_state];
uint32_t *const dist_slot_prices
= coder->dist_slot_prices[dist_state];
// Price to encode the pos_slot.
for (uint32_t pos_slot = 0;
pos_slot < coder->dist_table_size; ++pos_slot)
pos_slot_prices[pos_slot] = rc_bittree_price(
coder->pos_slot[len_to_pos_state],
POS_SLOT_BITS, pos_slot);
// Price to encode the dist_slot.
for (uint32_t dist_slot = 0;
dist_slot < coder->dist_table_size; ++dist_slot)
dist_slot_prices[dist_slot] = rc_bittree_price(
coder->dist_slot[dist_state],
DIST_SLOT_BITS, dist_slot);
// For matches with distance >= FULL_DISTANCES, add the price
// of the direct bits part of the match distance. (Align bits
// are handled by fill_align_prices()).
for (uint32_t pos_slot = END_POS_MODEL_INDEX;
pos_slot < coder->dist_table_size; ++pos_slot)
pos_slot_prices[pos_slot] += rc_direct_price(
((pos_slot >> 1) - 1) - ALIGN_BITS);
for (uint32_t dist_slot = DIST_MODEL_END;
dist_slot < coder->dist_table_size;
++dist_slot)
dist_slot_prices[dist_slot] += rc_direct_price(
((dist_slot >> 1) - 1) - ALIGN_BITS);
// Distances in the range [0, 3] are fully encoded with
// pos_slot, so they are used for coder->distances_prices
// dist_slot, so they are used for coder->dist_prices
// as is.
for (uint32_t i = 0; i < START_POS_MODEL_INDEX; ++i)
coder->distances_prices[len_to_pos_state][i]
= pos_slot_prices[i];
for (uint32_t i = 0; i < DIST_MODEL_START; ++i)
coder->dist_prices[dist_state][i]
= dist_slot_prices[i];
}
// Distances in the range [4, 127] depend on pos_slot and pos_special.
// We do this in a loop separate from the above loop to avoid
// redundant calls to get_pos_slot().
for (uint32_t i = START_POS_MODEL_INDEX; i < FULL_DISTANCES; ++i) {
const uint32_t pos_slot = get_pos_slot(i);
const uint32_t footer_bits = ((pos_slot >> 1) - 1);
const uint32_t base = (2 | (pos_slot & 1)) << footer_bits;
// Distances in the range [4, 127] depend on dist_slot and
// dist_special. We do this in a loop separate from the above
// loop to avoid redundant calls to get_dist_slot().
for (uint32_t i = DIST_MODEL_START; i < FULL_DISTANCES; ++i) {
const uint32_t dist_slot = get_dist_slot(i);
const uint32_t footer_bits = ((dist_slot >> 1) - 1);
const uint32_t base = (2 | (dist_slot & 1)) << footer_bits;
const uint32_t price = rc_bittree_reverse_price(
coder->pos_special + base - pos_slot - 1,
coder->dist_special + base - dist_slot - 1,
footer_bits, i - base);
for (uint32_t len_to_pos_state = 0;
len_to_pos_state < LEN_TO_POS_STATES;
++len_to_pos_state)
coder->distances_prices[len_to_pos_state][i]
= price + coder->pos_slot_prices[
len_to_pos_state][pos_slot];
for (uint32_t dist_state = 0; dist_state < DIST_STATES;
++dist_state)
coder->dist_prices[dist_state][i]
= price + coder->dist_slot_prices[
dist_state][dist_slot];
}
coder->match_price_count = 0;
@ -188,9 +186,9 @@ fill_distances_prices(lzma_coder *coder)
static void
fill_align_prices(lzma_coder *coder)
{
for (uint32_t i = 0; i < ALIGN_TABLE_SIZE; ++i)
for (uint32_t i = 0; i < ALIGN_SIZE; ++i)
coder->align_prices[i] = rc_bittree_reverse_price(
coder->pos_align, ALIGN_BITS, i);
coder->dist_align, ALIGN_BITS, i);
coder->align_price_count = 0;
return;
@ -296,10 +294,10 @@ helper1(lzma_coder *restrict coder, lzma_mf *restrict mf,
const uint8_t *const buf = mf_ptr(mf) - 1;
uint32_t rep_lens[REP_DISTANCES];
uint32_t rep_lens[REPS];
uint32_t rep_max_index = 0;
for (uint32_t i = 0; i < REP_DISTANCES; ++i) {
for (uint32_t i = 0; i < REPS; ++i) {
const uint8_t *const buf_back = buf - coder->reps[i] - 1;
if (not_equal_16(buf, buf_back)) {
@ -326,8 +324,7 @@ helper1(lzma_coder *restrict coder, lzma_mf *restrict mf,
if (len_main >= nice_len) {
*back_res = coder->matches[matches_count - 1].dist
+ REP_DISTANCES;
*back_res = coder->matches[matches_count - 1].dist + REPS;
*len_res = len_main;
mf_skip(mf, len_main - 1);
return UINT32_MAX;
@ -381,7 +378,7 @@ helper1(lzma_coder *restrict coder, lzma_mf *restrict mf,
coder->opts[1].pos_prev = 0;
for (uint32_t i = 0; i < REP_DISTANCES; ++i)
for (uint32_t i = 0; i < REPS; ++i)
coder->opts[0].backs[i] = coder->reps[i];
uint32_t len = len_end;
@ -390,7 +387,7 @@ helper1(lzma_coder *restrict coder, lzma_mf *restrict mf,
} while (--len >= 2);
for (uint32_t i = 0; i < REP_DISTANCES; ++i) {
for (uint32_t i = 0; i < REPS; ++i) {
uint32_t rep_len = rep_lens[i];
if (rep_len < 2)
continue;
@ -426,14 +423,13 @@ helper1(lzma_coder *restrict coder, lzma_mf *restrict mf,
for(; ; ++len) {
const uint32_t dist = coder->matches[i].dist;
const uint32_t cur_and_len_price = normal_match_price
+ get_pos_len_price(coder,
+ get_dist_len_price(coder,
dist, len, pos_state);
if (cur_and_len_price < coder->opts[len].price) {
coder->opts[len].price = cur_and_len_price;
coder->opts[len].pos_prev = 0;
coder->opts[len].back_prev
= dist + REP_DISTANCES;
coder->opts[len].back_prev = dist + REPS;
coder->opts[len].prev_1_is_literal = false;
}
@ -463,7 +459,7 @@ helper2(lzma_coder *coder, uint32_t *reps, const uint8_t *buf,
if (coder->opts[cur].prev_2) {
state = coder->opts[coder->opts[cur].pos_prev_2].state;
if (coder->opts[cur].back_prev_2 < REP_DISTANCES)
if (coder->opts[cur].back_prev_2 < REPS)
update_long_rep(state);
else
update_match(state);
@ -492,33 +488,33 @@ helper2(lzma_coder *coder, uint32_t *reps, const uint8_t *buf,
update_long_rep(state);
} else {
pos = coder->opts[cur].back_prev;
if (pos < REP_DISTANCES)
if (pos < REPS)
update_long_rep(state);
else
update_match(state);
}
if (pos < REP_DISTANCES) {
if (pos < REPS) {
reps[0] = coder->opts[pos_prev].backs[pos];
uint32_t i;
for (i = 1; i <= pos; ++i)
reps[i] = coder->opts[pos_prev].backs[i - 1];
for (; i < REP_DISTANCES; ++i)
for (; i < REPS; ++i)
reps[i] = coder->opts[pos_prev].backs[i];
} else {
reps[0] = pos - REP_DISTANCES;
reps[0] = pos - REPS;
for (uint32_t i = 1; i < REP_DISTANCES; ++i)
for (uint32_t i = 1; i < REPS; ++i)
reps[i] = coder->opts[pos_prev].backs[i - 1];
}
}
coder->opts[cur].state = state;
for (uint32_t i = 0; i < REP_DISTANCES; ++i)
for (uint32_t i = 0; i < REPS; ++i)
coder->opts[cur].backs[i] = reps[i];
const uint32_t cur_price = coder->opts[cur].price;
@ -611,7 +607,7 @@ helper2(lzma_coder *coder, uint32_t *reps, const uint8_t *buf,
uint32_t start_len = 2; // speed optimization
for (uint32_t rep_index = 0; rep_index < REP_DISTANCES; ++rep_index) {
for (uint32_t rep_index = 0; rep_index < REPS; ++rep_index) {
const uint8_t *const buf_back = buf - reps[rep_index] - 1;
if (not_equal_16(buf, buf_back))
continue;
@ -728,14 +724,14 @@ helper2(lzma_coder *coder, uint32_t *reps, const uint8_t *buf,
for (uint32_t len_test = start_len; ; ++len_test) {
const uint32_t cur_back = coder->matches[i].dist;
uint32_t cur_and_len_price = normal_match_price
+ get_pos_len_price(coder,
+ get_dist_len_price(coder,
cur_back, len_test, pos_state);
if (cur_and_len_price < coder->opts[cur + len_test].price) {
coder->opts[cur + len_test].price = cur_and_len_price;
coder->opts[cur + len_test].pos_prev = cur;
coder->opts[cur + len_test].back_prev
= cur_back + REP_DISTANCES;
= cur_back + REPS;
coder->opts[cur + len_test].prev_1_is_literal = false;
}
@ -795,7 +791,7 @@ helper2(lzma_coder *coder, uint32_t *reps, const uint8_t *buf,
coder->opts[offset].prev_2 = true;
coder->opts[offset].pos_prev_2 = cur;
coder->opts[offset].back_prev_2
= cur_back + REP_DISTANCES;
= cur_back + REPS;
}
//}
}
@ -831,9 +827,9 @@ lzma_lzma_optimum_normal(lzma_coder *restrict coder, lzma_mf *restrict mf,
// In liblzma they were moved into this single place.
if (mf->read_ahead == 0) {
if (coder->match_price_count >= (1 << 7))
fill_distances_prices(coder);
fill_dist_prices(coder);
if (coder->align_price_count >= ALIGN_TABLE_SIZE)
if (coder->align_price_count >= ALIGN_SIZE)
fill_align_prices(coder);
}
@ -845,7 +841,7 @@ lzma_lzma_optimum_normal(lzma_coder *restrict coder, lzma_mf *restrict mf,
if (len_end == UINT32_MAX)
return;
uint32_t reps[REP_DISTANCES];
uint32_t reps[REPS];
memcpy(reps, coder->reps, sizeof(reps));
uint32_t cur;

View File

@ -64,7 +64,7 @@ typedef struct {
uint32_t pos_prev; // pos_next;
uint32_t back_prev;
uint32_t backs[REP_DISTANCES];
uint32_t backs[REPS];
} lzma_optimal;
@ -77,7 +77,7 @@ struct lzma_coder_s {
lzma_lzma_state state;
/// The four most recent match distances
uint32_t reps[REP_DISTANCES];
uint32_t reps[REPS];
/// Array of match candidates
lzma_match matches[MATCH_LEN_MAX + 1];
@ -112,9 +112,9 @@ struct lzma_coder_s {
probability is_rep1[STATES];
probability is_rep2[STATES];
probability is_rep0_long[STATES][POS_STATES_MAX];
probability pos_slot[LEN_TO_POS_STATES][POS_SLOTS];
probability pos_special[FULL_DISTANCES - END_POS_MODEL_INDEX];
probability pos_align[ALIGN_TABLE_SIZE];
probability dist_slot[DIST_STATES][DIST_SLOTS];
probability dist_special[FULL_DISTANCES - DIST_MODEL_END];
probability dist_align[ALIGN_SIZE];
// These are the same as in lzma_decoder.c except that the encoders
// include also price tables.
@ -122,12 +122,12 @@ struct lzma_coder_s {
lzma_length_encoder rep_len_encoder;
// Price tables
uint32_t pos_slot_prices[LEN_TO_POS_STATES][POS_SLOTS];
uint32_t distances_prices[LEN_TO_POS_STATES][FULL_DISTANCES];
uint32_t dist_slot_prices[DIST_STATES][DIST_SLOTS];
uint32_t dist_prices[DIST_STATES][FULL_DISTANCES];
uint32_t dist_table_size;
uint32_t match_price_count;
uint32_t align_prices[ALIGN_TABLE_SIZE];
uint32_t align_prices[ALIGN_SIZE];
uint32_t align_price_count;
// Optimal