/////////////////////////////////////////////////////////////////////////////// // /// \file util.c /// \brief Miscellaneous utility functions // // Author: Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "private.h" #include /// Buffers for uint64_to_str() and uint64_to_nicestr() static char bufs[4][128]; // Thousand separator support in uint64_to_str() and uint64_to_nicestr(): // // DJGPP 2.05 added support for thousands separators but it's broken // at least under WinXP with Finnish locale that uses a non-breaking space // as the thousands separator. Workaround by disabling thousands separators // for DJGPP builds. // // MSVC doesn't support thousand separators. #if defined(__DJGPP__) || defined(_MSC_VER) # define FORMAT_THOUSAND_SEP(prefix, suffix) prefix suffix # define check_thousand_sep(slot) do { } while (0) #else # define FORMAT_THOUSAND_SEP(prefix, suffix) ((thousand == WORKS) \ ? prefix "'" suffix \ : prefix suffix) static enum { UNKNOWN, WORKS, BROKEN } thousand = UNKNOWN; /// Check if thousands separator is supported. Run-time checking is easiest /// because it seems to be sometimes lacking even on a POSIXish system. /// Note that trying to use thousands separators when snprintf() doesn't /// support them results in undefined behavior. This just has happened to /// work well enough in practice. /// /// This must be called before using the FORMAT_THOUSAND_SEP macro. static void check_thousand_sep(uint32_t slot) { if (thousand == UNKNOWN) { bufs[slot][0] = '\0'; snprintf(bufs[slot], sizeof(bufs[slot]), "%'u", 1U); thousand = bufs[slot][0] == '1' ? WORKS : BROKEN; } return; } #endif extern void * xrealloc(void *ptr, size_t size) { assert(size > 0); // Save ptr so that we can free it if realloc fails. // The point is that message_fatal ends up calling stdio functions // which in some libc implementations might allocate memory from // the heap. Freeing ptr improves the chances that there's free // memory for stdio functions if they need it. void *p = ptr; ptr = realloc(ptr, size); if (ptr == NULL) { const int saved_errno = errno; free(p); message_fatal("%s", strerror(saved_errno)); } return ptr; } extern char * xstrdup(const char *src) { assert(src != NULL); const size_t size = strlen(src) + 1; char *dest = xmalloc(size); return memcpy(dest, src, size); } extern uint64_t str_to_uint64(const char *name, const char *value, uint64_t min, uint64_t max) { uint64_t result = 0; // Skip blanks. while (*value == ' ' || *value == '\t') ++value; // Accept special value "max". Supporting "min" doesn't seem useful. if (strcmp(value, "max") == 0) return max; if (*value < '0' || *value > '9') message_fatal(_("%s: Value is not a non-negative " "decimal integer"), value); do { // Don't overflow. if (result > UINT64_MAX / 10) goto error; result *= 10; // Another overflow check const uint32_t add = (uint32_t)(*value - '0'); if (UINT64_MAX - add < result) goto error; result += add; ++value; } while (*value >= '0' && *value <= '9'); if (*value != '\0') { // Look for suffix. Originally this supported both base-2 // and base-10, but since there seems to be little need // for base-10 in this program, treat everything as base-2 // and also be more relaxed about the case of the first // letter of the suffix. uint64_t multiplier = 0; if (*value == 'k' || *value == 'K') multiplier = UINT64_C(1) << 10; else if (*value == 'm' || *value == 'M') multiplier = UINT64_C(1) << 20; else if (*value == 'g' || *value == 'G') multiplier = UINT64_C(1) << 30; ++value; // Allow also e.g. Ki, KiB, and KB. if (*value != '\0' && strcmp(value, "i") != 0 && strcmp(value, "iB") != 0 && strcmp(value, "B") != 0) multiplier = 0; if (multiplier == 0) { message(V_ERROR, _("%s: Invalid multiplier suffix"), value - 1); message_fatal(_("Valid suffixes are 'KiB' (2^10), " "'MiB' (2^20), and 'GiB' (2^30).")); } // Don't overflow here either. if (result > UINT64_MAX / multiplier) goto error; result *= multiplier; } if (result < min || result > max) goto error; return result; error: message_fatal(_("Value of the option '%s' must be in the range " "[%" PRIu64 ", %" PRIu64 "]"), name, min, max); } extern uint64_t round_up_to_mib(uint64_t n) { return (n >> 20) + ((n & ((UINT32_C(1) << 20) - 1)) != 0); } extern const char * uint64_to_str(uint64_t value, uint32_t slot) { assert(slot < ARRAY_SIZE(bufs)); check_thousand_sep(slot); snprintf(bufs[slot], sizeof(bufs[slot]), FORMAT_THOUSAND_SEP("%", PRIu64), value); return bufs[slot]; } extern const char * uint64_to_nicestr(uint64_t value, enum nicestr_unit unit_min, enum nicestr_unit unit_max, bool always_also_bytes, uint32_t slot) { assert(unit_min <= unit_max); assert(unit_max <= NICESTR_TIB); assert(slot < ARRAY_SIZE(bufs)); check_thousand_sep(slot); enum nicestr_unit unit = NICESTR_B; char *pos = bufs[slot]; size_t left = sizeof(bufs[slot]); if ((unit_min == NICESTR_B && value < 10000) || unit_max == NICESTR_B) { // The value is shown as bytes. my_snprintf(&pos, &left, FORMAT_THOUSAND_SEP("%", "u"), (unsigned int)value); } else { // Scale the value to a nicer unit. Unless unit_min and // unit_max limit us, we will show at most five significant // digits with one decimal place. double d = (double)(value); do { d /= 1024.0; ++unit; } while (unit < unit_min || (d > 9999.9 && unit < unit_max)); my_snprintf(&pos, &left, FORMAT_THOUSAND_SEP("%", ".1f"), d); } static const char suffix[5][4] = { "B", "KiB", "MiB", "GiB", "TiB" }; my_snprintf(&pos, &left, " %s", suffix[unit]); if (always_also_bytes && value >= 10000) snprintf(pos, left, FORMAT_THOUSAND_SEP(" (%", PRIu64 " B)"), value); return bufs[slot]; } extern void my_snprintf(char **pos, size_t *left, const char *fmt, ...) { va_list ap; va_start(ap, fmt); const int len = vsnprintf(*pos, *left, fmt, ap); va_end(ap); // If an error occurred, we want the caller to think that the whole // buffer was used. This way no more data will be written to the // buffer. We don't need better error handling here, although it // is possible that the result looks garbage on the terminal if // e.g. an UTF-8 character gets split. That shouldn't (easily) // happen though, because the buffers used have some extra room. if (len < 0 || (size_t)(len) >= *left) { *left = 0; } else { *pos += len; *left -= (size_t)(len); } return; } extern bool is_tty(int fd) { #if defined(_WIN32) && !defined(__CYGWIN__) // There is no need to check if handle == INVALID_HANDLE_VALUE // because it will return false anyway when used in GetConsoleMode(). // The resulting HANDLE does not need to be closed based on Windows // API documentation. intptr_t handle = _get_osfhandle(fd); DWORD mode; // GetConsoleMode() is an easy way to tell if the HANDLE is a // console or not. We do not care about the value of mode since we // do not plan to use any further Windows console functions. return GetConsoleMode((HANDLE)handle, &mode); #else return isatty(fd); #endif } extern bool is_tty_stdin(void) { const bool ret = is_tty(STDIN_FILENO); if (ret) message_error(_("Compressed data cannot be read from " "a terminal")); return ret; } extern bool is_tty_stdout(void) { const bool ret = is_tty(STDOUT_FILENO); if (ret) message_error(_("Compressed data cannot be written to " "a terminal")); return ret; }