xz-analysis-mirror/src/xz/util.c

309 lines
7.6 KiB
C

///////////////////////////////////////////////////////////////////////////////
//
/// \file util.c
/// \brief Miscellaneous utility functions
//
// Author: Lasse Collin
//
// This file has been put into the public domain.
// You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////
#include "private.h"
#include <stdarg.h>
/// Buffers for uint64_to_str() and uint64_to_nicestr()
static char bufs[4][128];
// Thousand separator support in uint64_to_str() and uint64_to_nicestr():
//
// DJGPP 2.05 added support for thousands separators but it's broken
// at least under WinXP with Finnish locale that uses a non-breaking space
// as the thousands separator. Workaround by disabling thousands separators
// for DJGPP builds.
//
// MSVC doesn't support thousand separators.
#if defined(__DJGPP__) || defined(_MSC_VER)
# define FORMAT_THOUSAND_SEP(prefix, suffix) prefix suffix
# define check_thousand_sep(slot) do { } while (0)
#else
# define FORMAT_THOUSAND_SEP(prefix, suffix) ((thousand == WORKS) \
? prefix "'" suffix \
: prefix suffix)
static enum { UNKNOWN, WORKS, BROKEN } thousand = UNKNOWN;
/// Check if thousands separator is supported. Run-time checking is easiest
/// because it seems to be sometimes lacking even on a POSIXish system.
/// Note that trying to use thousands separators when snprintf() doesn't
/// support them results in undefined behavior. This just has happened to
/// work well enough in practice.
///
/// This must be called before using the FORMAT_THOUSAND_SEP macro.
static void
check_thousand_sep(uint32_t slot)
{
if (thousand == UNKNOWN) {
bufs[slot][0] = '\0';
snprintf(bufs[slot], sizeof(bufs[slot]), "%'u", 1U);
thousand = bufs[slot][0] == '1' ? WORKS : BROKEN;
}
return;
}
#endif
extern void *
xrealloc(void *ptr, size_t size)
{
assert(size > 0);
// Save ptr so that we can free it if realloc fails.
// The point is that message_fatal ends up calling stdio functions
// which in some libc implementations might allocate memory from
// the heap. Freeing ptr improves the chances that there's free
// memory for stdio functions if they need it.
void *p = ptr;
ptr = realloc(ptr, size);
if (ptr == NULL) {
const int saved_errno = errno;
free(p);
message_fatal("%s", strerror(saved_errno));
}
return ptr;
}
extern char *
xstrdup(const char *src)
{
assert(src != NULL);
const size_t size = strlen(src) + 1;
char *dest = xmalloc(size);
return memcpy(dest, src, size);
}
extern uint64_t
str_to_uint64(const char *name, const char *value, uint64_t min, uint64_t max)
{
uint64_t result = 0;
// Skip blanks.
while (*value == ' ' || *value == '\t')
++value;
// Accept special value "max". Supporting "min" doesn't seem useful.
if (strcmp(value, "max") == 0)
return max;
if (*value < '0' || *value > '9')
message_fatal(_("%s: Value is not a non-negative "
"decimal integer"), value);
do {
// Don't overflow.
if (result > UINT64_MAX / 10)
goto error;
result *= 10;
// Another overflow check
const uint32_t add = (uint32_t)(*value - '0');
if (UINT64_MAX - add < result)
goto error;
result += add;
++value;
} while (*value >= '0' && *value <= '9');
if (*value != '\0') {
// Look for suffix. Originally this supported both base-2
// and base-10, but since there seems to be little need
// for base-10 in this program, treat everything as base-2
// and also be more relaxed about the case of the first
// letter of the suffix.
uint64_t multiplier = 0;
if (*value == 'k' || *value == 'K')
multiplier = UINT64_C(1) << 10;
else if (*value == 'm' || *value == 'M')
multiplier = UINT64_C(1) << 20;
else if (*value == 'g' || *value == 'G')
multiplier = UINT64_C(1) << 30;
++value;
// Allow also e.g. Ki, KiB, and KB.
if (*value != '\0' && strcmp(value, "i") != 0
&& strcmp(value, "iB") != 0
&& strcmp(value, "B") != 0)
multiplier = 0;
if (multiplier == 0) {
message(V_ERROR, _("%s: Invalid multiplier suffix"),
value - 1);
message_fatal(_("Valid suffixes are 'KiB' (2^10), "
"'MiB' (2^20), and 'GiB' (2^30)."));
}
// Don't overflow here either.
if (result > UINT64_MAX / multiplier)
goto error;
result *= multiplier;
}
if (result < min || result > max)
goto error;
return result;
error:
message_fatal(_("Value of the option '%s' must be in the range "
"[%" PRIu64 ", %" PRIu64 "]"),
name, min, max);
}
extern uint64_t
round_up_to_mib(uint64_t n)
{
return (n >> 20) + ((n & ((UINT32_C(1) << 20) - 1)) != 0);
}
extern const char *
uint64_to_str(uint64_t value, uint32_t slot)
{
assert(slot < ARRAY_SIZE(bufs));
check_thousand_sep(slot);
snprintf(bufs[slot], sizeof(bufs[slot]),
FORMAT_THOUSAND_SEP("%", PRIu64), value);
return bufs[slot];
}
extern const char *
uint64_to_nicestr(uint64_t value, enum nicestr_unit unit_min,
enum nicestr_unit unit_max, bool always_also_bytes,
uint32_t slot)
{
assert(unit_min <= unit_max);
assert(unit_max <= NICESTR_TIB);
assert(slot < ARRAY_SIZE(bufs));
check_thousand_sep(slot);
enum nicestr_unit unit = NICESTR_B;
char *pos = bufs[slot];
size_t left = sizeof(bufs[slot]);
if ((unit_min == NICESTR_B && value < 10000)
|| unit_max == NICESTR_B) {
// The value is shown as bytes.
my_snprintf(&pos, &left, FORMAT_THOUSAND_SEP("%", "u"),
(unsigned int)value);
} else {
// Scale the value to a nicer unit. Unless unit_min and
// unit_max limit us, we will show at most five significant
// digits with one decimal place.
double d = (double)(value);
do {
d /= 1024.0;
++unit;
} while (unit < unit_min || (d > 9999.9 && unit < unit_max));
my_snprintf(&pos, &left, FORMAT_THOUSAND_SEP("%", ".1f"), d);
}
static const char suffix[5][4] = { "B", "KiB", "MiB", "GiB", "TiB" };
my_snprintf(&pos, &left, " %s", suffix[unit]);
if (always_also_bytes && value >= 10000)
snprintf(pos, left, FORMAT_THOUSAND_SEP(" (%", PRIu64 " B)"),
value);
return bufs[slot];
}
extern void
my_snprintf(char **pos, size_t *left, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
const int len = vsnprintf(*pos, *left, fmt, ap);
va_end(ap);
// If an error occurred, we want the caller to think that the whole
// buffer was used. This way no more data will be written to the
// buffer. We don't need better error handling here, although it
// is possible that the result looks garbage on the terminal if
// e.g. an UTF-8 character gets split. That shouldn't (easily)
// happen though, because the buffers used have some extra room.
if (len < 0 || (size_t)(len) >= *left) {
*left = 0;
} else {
*pos += len;
*left -= (size_t)(len);
}
return;
}
extern bool
is_tty(int fd)
{
#if defined(_WIN32) && !defined(__CYGWIN__)
// There is no need to check if handle == INVALID_HANDLE_VALUE
// because it will return false anyway when used in GetConsoleMode().
// The resulting HANDLE is owned by the file descriptor.
// The HANDLE must not be closed here.
intptr_t handle = _get_osfhandle(fd);
DWORD mode;
// GetConsoleMode() is an easy way to tell if the HANDLE is a
// console or not. We do not care about the value of mode since we
// do not plan to use any further Windows console functions.
return GetConsoleMode((HANDLE)handle, &mode);
#else
return isatty(fd);
#endif
}
extern bool
is_tty_stdin(void)
{
const bool ret = is_tty(STDIN_FILENO);
if (ret)
message_error(_("Compressed data cannot be read from "
"a terminal"));
return ret;
}
extern bool
is_tty_stdout(void)
{
const bool ret = is_tty(STDOUT_FILENO);
if (ret)
message_error(_("Compressed data cannot be written to "
"a terminal"));
return ret;
}