xz-analysis-mirror/src/xz/hardware.c

294 lines
8.2 KiB
C

///////////////////////////////////////////////////////////////////////////////
//
/// \file hardware.c
/// \brief Detection of available hardware resources
//
// Author: Lasse Collin
//
// This file has been put into the public domain.
// You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////
#include "private.h"
/// Maximum number of worker threads. This can be set with
/// the --threads=NUM command line option.
static uint32_t threads_max = 1;
/// True when the number of threads is automatically determined based
/// on the available hardware threads.
static bool threads_are_automatic = false;
/// Memory usage limit for compression
static uint64_t memlimit_compress = 0;
/// Memory usage limit for decompression
static uint64_t memlimit_decompress = 0;
/// Default memory usage for multithreaded modes:
///
/// - Default value for --memlimit-compress when automatic number of threads
/// is used. However, if the limit wouldn't allow even one thread then
/// the limit is ignored in coder.c and one thread will be used anyway.
/// This mess is a compromise: we wish to prevent -T0 from using too
/// many threads but we also don't want xz to give an error due to
/// a memlimit that the user didn't explicitly set.
///
/// - Default value for --memlimit-mt-decompress
///
/// This value is caluclated in hardware_init() and cannot be changed later.
static uint64_t memlimit_mt_default;
/// Memory usage limit for multithreaded decompression. This is a soft limit:
/// if reducing the number of threads to one isn't enough to keep memory
/// usage below this limit, then one thread is used and this limit is ignored.
/// memlimit_decompress is still obeyed.
///
/// This can be set with --memlimit-mt-decompress. The default value for
/// this is memlimit_mt_default.
static uint64_t memlimit_mtdec;
/// Total amount of physical RAM
static uint64_t total_ram;
extern void
hardware_threads_set(uint32_t n)
{
if (n == 0) {
// Automatic number of threads was requested.
threads_are_automatic = true;
// If threading support was enabled at build time,
// use the number of available CPU cores. Otherwise
// use one thread since disabling threading support
// omits lzma_cputhreads() from liblzma.
#ifdef MYTHREAD_ENABLED
threads_max = lzma_cputhreads();
if (threads_max == 0)
threads_max = 1;
#else
threads_max = 1;
#endif
} else {
threads_max = n;
threads_are_automatic = false;
}
return;
}
extern uint32_t
hardware_threads_get(void)
{
return threads_max;
}
extern bool
hardware_threads_is_mt(void)
{
return threads_max > 1 || threads_are_automatic;
}
extern void
hardware_memlimit_set(uint64_t new_memlimit,
bool set_compress, bool set_decompress, bool set_mtdec,
bool is_percentage)
{
if (is_percentage) {
assert(new_memlimit > 0);
assert(new_memlimit <= 100);
new_memlimit = (uint32_t)new_memlimit * total_ram / 100;
}
if (set_compress) {
memlimit_compress = new_memlimit;
#if SIZE_MAX == UINT32_MAX
// FIXME?
//
// When running a 32-bit xz on a system with a lot of RAM and
// using a percentage-based memory limit, the result can be
// bigger than the 32-bit address space. Limiting the limit
// below SIZE_MAX for compression (not decompression) makes
// xz lower the compression settings (or number of threads)
// to a level that *might* work. In practice it has worked
// when using a 64-bit kernel that gives full 4 GiB address
// space to 32-bit programs. In other situations this might
// still be too high, like 32-bit kernels that may give much
// less than 4 GiB to a single application.
//
// So this is an ugly hack but I will keep it here while
// it does more good than bad.
//
// Use a value less than SIZE_MAX so that there's some room
// for the xz program and so on. Don't use 4000 MiB because
// it could look like someone mixed up base-2 and base-10.
#ifdef __mips__
// For MIPS32, due to architectural pecularities,
// the limit is even lower.
const uint64_t limit_max = UINT64_C(2000) << 20;
#else
const uint64_t limit_max = UINT64_C(4020) << 20;
#endif
// UINT64_MAX is a special case for the string "max" so
// that has to be handled specially.
if (memlimit_compress != UINT64_MAX
&& memlimit_compress > limit_max)
memlimit_compress = limit_max;
#endif
}
if (set_decompress)
memlimit_decompress = new_memlimit;
if (set_mtdec)
memlimit_mtdec = new_memlimit;
return;
}
extern uint64_t
hardware_memlimit_get(enum operation_mode mode)
{
// 0 is a special value that indicates the default.
// It disables the limit in single-threaded mode.
//
// NOTE: For multithreaded decompression, this is the hard limit
// (memlimit_stop). hardware_memlimit_mtdec_get() gives the
// soft limit (memlimit_threaded).
const uint64_t memlimit = mode == MODE_COMPRESS
? memlimit_compress : memlimit_decompress;
return memlimit != 0 ? memlimit : UINT64_MAX;
}
extern uint64_t
hardware_memlimit_mtenc_get(void)
{
return memlimit_compress == 0 && threads_are_automatic
? memlimit_mt_default
: hardware_memlimit_get(MODE_COMPRESS);
}
extern bool
hardware_memlimit_mtenc_is_default(void)
{
return memlimit_compress == 0 && threads_are_automatic;
}
extern uint64_t
hardware_memlimit_mtdec_get(void)
{
uint64_t m = memlimit_mtdec != 0
? memlimit_mtdec
: memlimit_mt_default;
// Cap the value to memlimit_decompress if it has been specified.
// This is nice for --info-memory. It wouldn't be needed for liblzma
// since it does this anyway.
if (memlimit_decompress != 0 && m > memlimit_decompress)
m = memlimit_decompress;
return m;
}
/// Helper for hardware_memlimit_show() to print one human-readable info line.
static void
memlimit_show(const char *str, size_t str_columns, uint64_t value)
{
// Calculate the field width so that str will be padded to take
// str_columns on the terminal.
//
// NOTE: If the string is invalid, this will be -1. Using -1 as
// the field width is fine here so it's not handled specially.
const int fw = tuklib_mbstr_fw(str, (int)(str_columns));
// The memory usage limit is considered to be disabled if value
// is 0 or UINT64_MAX. This might get a bit more complex once there
// is threading support. See the comment in hardware_memlimit_get().
if (value == 0 || value == UINT64_MAX)
printf("%-*s %s\n", fw, str, _("Disabled"));
else
printf("%-*s %s MiB (%s B)\n", fw, str,
uint64_to_str(round_up_to_mib(value), 0),
uint64_to_str(value, 1));
return;
}
extern void
hardware_memlimit_show(void)
{
if (opt_robot) {
printf("%" PRIu64 "\t%" PRIu64 "\t%" PRIu64 "\n", total_ram,
memlimit_compress, memlimit_decompress);
} else {
const char *msgs[] = {
_("Amount of physical memory (RAM):"),
_("Memory usage limit for compression:"),
_("Memory usage limit for decompression:"),
};
size_t width_max = 1;
for (unsigned i = 0; i < ARRAY_SIZE(msgs); ++i) {
size_t w = tuklib_mbstr_width(msgs[i], NULL);
// When debugging, catch invalid strings with
// an assertion. Otherwise fallback to 1 so
// that the columns just won't be aligned.
assert(w != (size_t)-1);
if (w == (size_t)-1)
w = 1;
if (width_max < w)
width_max = w;
}
memlimit_show(msgs[0], width_max, total_ram);
memlimit_show(msgs[1], width_max, memlimit_compress);
memlimit_show(msgs[2], width_max, memlimit_decompress);
}
tuklib_exit(E_SUCCESS, E_ERROR, message_verbosity_get() != V_SILENT);
}
extern void
hardware_init(void)
{
// Get the amount of RAM. If we cannot determine it,
// use the assumption defined by the configure script.
total_ram = lzma_physmem();
if (total_ram == 0)
total_ram = (uint64_t)(ASSUME_RAM) * 1024 * 1024;
// FIXME? There may be better methods to determine the default value.
// One Linux-specific suggestion is to use MemAvailable from
// /proc/meminfo as the starting point.
memlimit_mt_default = total_ram / 4;
// A too high value may cause 32-bit xz to run out of address space.
// Use a conservative maximum value here. A few typical address space
// sizes with Linux:
// - x86-64 with 32-bit xz: 4 GiB
// - x86: 3 GiB
// - MIPS32: 2 GiB
const size_t mem_ceiling = SIZE_MAX / 3; // About 1365 GiB on 32-bit
if (memlimit_mt_default > mem_ceiling)
memlimit_mt_default = mem_ceiling;
return;
}