2008-01-15 07:02:22 -05:00
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
/// \file fastpos.h
|
|
|
|
/// \brief Kind of two-bit version of bit scan reverse
|
2009-04-13 04:27:40 -04:00
|
|
|
///
|
|
|
|
// Authors: Igor Pavlov
|
|
|
|
// Lasse Collin
|
2008-01-15 07:02:22 -05:00
|
|
|
//
|
2009-04-13 04:27:40 -04:00
|
|
|
// This file has been put into the public domain.
|
|
|
|
// You can do whatever you want with this file.
|
2008-01-15 07:02:22 -05:00
|
|
|
//
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
#ifndef LZMA_FASTPOS_H
|
|
|
|
#define LZMA_FASTPOS_H
|
|
|
|
|
2010-10-26 03:36:41 -04:00
|
|
|
// LZMA encodes match distances by storing the highest two bits using
|
|
|
|
// a six-bit value [0, 63], and then the missing lower bits.
|
|
|
|
// Dictionary size is also stored using this encoding in the .xz
|
2008-01-15 07:02:22 -05:00
|
|
|
// file format header.
|
|
|
|
//
|
|
|
|
// fastpos.h provides a way to quickly find out the correct six-bit
|
|
|
|
// values. The following table gives some examples of this encoding:
|
|
|
|
//
|
2010-10-26 03:36:41 -04:00
|
|
|
// dist return
|
2008-01-15 07:02:22 -05:00
|
|
|
// 0 0
|
|
|
|
// 1 1
|
|
|
|
// 2 2
|
|
|
|
// 3 3
|
|
|
|
// 4 4
|
|
|
|
// 5 4
|
|
|
|
// 6 5
|
|
|
|
// 7 5
|
|
|
|
// 8 6
|
|
|
|
// 11 6
|
|
|
|
// 12 7
|
|
|
|
// ... ...
|
|
|
|
// 15 7
|
|
|
|
// 16 8
|
|
|
|
// 17 8
|
|
|
|
// ... ...
|
|
|
|
// 23 8
|
|
|
|
// 24 9
|
|
|
|
// 25 9
|
|
|
|
// ... ...
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Provided functions or macros
|
|
|
|
// ----------------------------
|
|
|
|
//
|
2010-10-26 03:36:41 -04:00
|
|
|
// get_dist_slot(dist) is the basic version. get_dist_slot_2(dist)
|
|
|
|
// assumes that dist >= FULL_DISTANCES, thus the result is at least
|
|
|
|
// FULL_DISTANCES_BITS * 2. Using get_dist_slot(dist) instead of
|
|
|
|
// get_dist_slot_2(dist) would give the same result, but get_dist_slot_2(dist)
|
2008-01-15 07:02:22 -05:00
|
|
|
// should be tiny bit faster due to the assumption being made.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Size vs. speed
|
|
|
|
// --------------
|
|
|
|
//
|
|
|
|
// With some CPUs that have fast BSR (bit scan reverse) instruction, the
|
|
|
|
// size optimized version is slightly faster than the bigger table based
|
|
|
|
// approach. Such CPUs include Intel Pentium Pro, Pentium II, Pentium III
|
|
|
|
// and Core 2 (possibly others). AMD K7 seems to have slower BSR, but that
|
|
|
|
// would still have speed roughly comparable to the table version. Older
|
|
|
|
// x86 CPUs like the original Pentium have very slow BSR; on those systems
|
|
|
|
// the table version is a lot faster.
|
|
|
|
//
|
|
|
|
// On some CPUs, the table version is a lot faster when using position
|
|
|
|
// dependent code, but with position independent code the size optimized
|
|
|
|
// version is slightly faster. This occurs at least on 32-bit SPARC (no
|
|
|
|
// ASM optimizations).
|
|
|
|
//
|
|
|
|
// I'm making the table version the default, because that has good speed
|
|
|
|
// on all systems I have tried. The size optimized version is sometimes
|
|
|
|
// slightly faster, but sometimes it is a lot slower.
|
|
|
|
|
|
|
|
#ifdef HAVE_SMALL
|
2010-10-26 03:36:41 -04:00
|
|
|
# define get_dist_slot(dist) \
|
|
|
|
((dist) <= 4 ? (dist) : get_dist_slot_2(dist))
|
2008-01-15 07:02:22 -05:00
|
|
|
|
|
|
|
static inline uint32_t
|
2010-10-26 03:36:41 -04:00
|
|
|
get_dist_slot_2(uint32_t dist)
|
2008-01-15 07:02:22 -05:00
|
|
|
{
|
2010-10-26 03:36:41 -04:00
|
|
|
const uint32_t i = bsr32(dist);
|
|
|
|
return (i + i) + ((dist >> (i - 1)) & 1);
|
2008-01-15 07:02:22 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
#define FASTPOS_BITS 13
|
|
|
|
|
|
|
|
extern const uint8_t lzma_fastpos[1 << FASTPOS_BITS];
|
|
|
|
|
|
|
|
|
|
|
|
#define fastpos_shift(extra, n) \
|
|
|
|
((extra) + (n) * (FASTPOS_BITS - 1))
|
|
|
|
|
|
|
|
#define fastpos_limit(extra, n) \
|
|
|
|
(UINT32_C(1) << (FASTPOS_BITS + fastpos_shift(extra, n)))
|
|
|
|
|
2010-10-26 03:36:41 -04:00
|
|
|
#define fastpos_result(dist, extra, n) \
|
|
|
|
lzma_fastpos[(dist) >> fastpos_shift(extra, n)] \
|
2008-01-15 07:02:22 -05:00
|
|
|
+ 2 * fastpos_shift(extra, n)
|
|
|
|
|
|
|
|
|
|
|
|
static inline uint32_t
|
2010-10-26 03:36:41 -04:00
|
|
|
get_dist_slot(uint32_t dist)
|
2008-01-15 07:02:22 -05:00
|
|
|
{
|
|
|
|
// If it is small enough, we can pick the result directly from
|
|
|
|
// the precalculated table.
|
2010-10-26 03:36:41 -04:00
|
|
|
if (dist < fastpos_limit(0, 0))
|
|
|
|
return lzma_fastpos[dist];
|
2008-01-15 07:02:22 -05:00
|
|
|
|
2010-10-26 03:36:41 -04:00
|
|
|
if (dist < fastpos_limit(0, 1))
|
|
|
|
return fastpos_result(dist, 0, 1);
|
2008-01-15 07:02:22 -05:00
|
|
|
|
2010-10-26 03:36:41 -04:00
|
|
|
return fastpos_result(dist, 0, 2);
|
2008-01-15 07:02:22 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef FULL_DISTANCES_BITS
|
|
|
|
static inline uint32_t
|
2010-10-26 03:36:41 -04:00
|
|
|
get_dist_slot_2(uint32_t dist)
|
2008-01-15 07:02:22 -05:00
|
|
|
{
|
2010-10-26 03:36:41 -04:00
|
|
|
assert(dist >= FULL_DISTANCES);
|
2008-01-15 07:02:22 -05:00
|
|
|
|
2010-10-26 03:36:41 -04:00
|
|
|
if (dist < fastpos_limit(FULL_DISTANCES_BITS - 1, 0))
|
|
|
|
return fastpos_result(dist, FULL_DISTANCES_BITS - 1, 0);
|
2008-01-15 07:02:22 -05:00
|
|
|
|
2010-10-26 03:36:41 -04:00
|
|
|
if (dist < fastpos_limit(FULL_DISTANCES_BITS - 1, 1))
|
|
|
|
return fastpos_result(dist, FULL_DISTANCES_BITS - 1, 1);
|
2008-01-15 07:02:22 -05:00
|
|
|
|
2010-10-26 03:36:41 -04:00
|
|
|
return fastpos_result(dist, FULL_DISTANCES_BITS - 1, 2);
|
2008-01-15 07:02:22 -05:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|